Theano Tutorials
Session 3
Internals

lan Goodfellow

Qutline

Social structure of theano development
Writing a new Op

Writing an optimization

Writing GPU ops

Features we're interested in

Social structure

® Mailing lists
® Development team

® Using github

Mailing lists

® theano-users@googlegroups.com

® Write here if you are having a problem

understanding how to use provided Theano classes
and functions

® Bug reports OK here

® theano-dev(@googlegroups.com

® Bug reports more likely to get prompt attention
here

® Ask for help writing new Theano Ops, optimizations,
etc.

® Propose / ask for help designing new Theano features

Development team

Frederic Bastien is a software engineer on staff at
LISA lab. He is the main person presently
maintaining / developing Theano

LISA students participate in a “Common Code
Workflow” (a kind of incorrect translation from
French name, should be more of “Shared Library
Development”) program

The CCW sometimes adds Theano features buts
mostly works on Pylearn2

| myself am a fairly minor contributor; I've mostly
done speedups, bug fixes, better error messages,
made behavior more consistent, etc. but few new
features

Using GitHub

Make an account on github
Use the “fork” feature to make your own Theano repository in your account
“git clone” the repository to your machine

“git checkout -b my_feature master” to start working in a branch to develop
your new feature

“git add” and “git commit” to log your changes in your branch

“git push origin my_feature” to send the branch to your fork on your
GitHub account

Use the “pull request” feature from your repository’s GitHub page to ask
the Theano developers to merge your branch into the “master” branch of
the central repository

Theano developers will comment on your code and request changes

Make the changes, use “git add” and “git commit” to track then, and “git push
origin my_feature” to add them to the pull request

Writing a new Op

The Op contract
Op.grad

How theano.grad works
verify grad

Op.perform

Op.c_code

The Op contract

There is no Op base class to inherit from

Instead, write any class that obeys “the Op
contract”

Described here: http://deeplearning.net/
software/theano/extending/op.html#op-s-
contract

Op.grad

® Builds an expression for the product
between the op’s Jacobian and another
vector

® theano.grad will pass in the gradient of the
cost on the outputs as that vector

® Described in detail here: http://
deeplearning.net/software/theano/
extending/op.html#grad

How theano.grad
works

® https://github.com/Theano/Theano/blob/
master/theano/gradient.py#L 354

verify grad

® Uses numerical differentiation to make sure
your symbolic differentiation is accurate

® Numerical differentiation can be expensive
for multiple inputs / outputs. Compensate
by random linear projection from one input
to many inputs, many outputs to one

output.

Op.perform

® Python code for computing the op

® Many operations are slow when
implemented in python, but this can provide
a good reference implementation for

DEBUG_MODE

® Some operations can be implemented
efficiently by calling a few other object’s C
bindings from python code

Op.c_code

® Returns a string for C code to carry out
the op’s calculations

® Change the op’s c_code_ cache version
each time you change this, otherwise it
won'’t get regenerated

Writing an optimization

#numerically stabilize log softmax (X
as X-X.max(axis=1).dimshuffle(0,'x") - log(exp(X-X.max(axis=1).dimshuffle(0,'x")).sum(axis=1)).dimshuffle(0,x)
def make_out_pattern(X):

stabilized_X = X - X.max(axis=1).dimshuffle(0, 'x')

out_var = stabilized_X - tensor.log(tensor.exp(stabilized_X).sum(

axis=1)).dimshuffle(0, 'x')

tell DEBUG_MODE that it's OK if the original graph produced NaN and the optimized graph does not

out_var.values_eq_approx = out_var.type.values_eq_approx_remove_nan

return out_var

local_log_softmax = gof.PatternSub(in_pattern=(tensor.log, (softmax, 'x')),
out_pattern=(make_out_pattern, 'x'),
allow_multiple_clients=True)

Register the optimization
opt.register_specialize(local_log_softmax, name='local_log_softmax’)

Views and inplace
o Views optimizations

® Variables whose representation depends on another
variable (usually to save memory)

® Example:y = x[i,:]
® |nplace operations
® Example: z = T.nnet.sigmoid(x)

® Jo save memory, we may want to compute z in the
same buffer that was used to store x

® But what if someone is still using y?

The DestroyHandler

User is not allowed to manually insert inplace
ops

User builds a graph with non-inplace ops
Optimizations propose turning ops inplace

Destroyhandler evaluates graph for cyclical
dependencies

® |f a cycle exists no creation/deletion schedule
is possible and the optimization is rejected

Writing a GPU op

Write a CPU version (the actual
implementation is optional)

Write a GPU version

Write an optimization to turn the CPU
version into a GPU version

User allocates CPU version

Optimizations turn it into the GPU version
when running with device=gpu

Features we're
interested in

® Built-in mode for disabling graph optimizations
® |Improved shared variables

® Reduced python dependency

Graph optimization
disabling mode

® A convenient thing to do is run with all ops using
C code but not doing any graph optimizations
(basically, do what Torch always does)

® Currently you can do this by manually
constructing the right mode in your python code

® |t would be nice to have a C_ CODE_MODE
default

® Some rough edges on the GPU

Improved shared
variables

Shared variables are Theano’s only way of
modifying a buffer

Currently each Theano function is compiled
in terms of specific variables, e.g. buffers

Could be nice to run the same function on
many buffers

GPU serialization issue

Reduced python
dependency

Python has a Global Interpreter Lock

GIL means that multiple threads can’t
accomplish much CPU parallelism

Much of the C code depends on nhumpy
libraries, and thus python memory
management

