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• Writing a new Op

• Writing an optimization

• Writing GPU ops

• Features we’re interested in



Social structure

• Mailing lists

• Development team

• Using github



Mailing lists
• theano-users@googlegroups.com

• Write here if you are having a problem 
understanding how to use provided Theano classes 
and functions

• Bug reports OK here

• theano-dev@googlegroups.com

• Bug reports more likely to get prompt attention 
here

• Ask for help writing new Theano Ops, optimizations, 
etc.

• Propose / ask for help designing new Theano features



Development team
• Frédéric Bastien is a software engineer on staff at 

LISA lab. He is the main person presently 
maintaining / developing Theano

• LISA students participate in a “Common Code 
Workflow” (a kind of incorrect translation from 
French name, should be more of “Shared Library 
Development”) program

• The CCW sometimes adds Theano features buts 
mostly works on Pylearn2

• I myself am a fairly minor contributor; I’ve mostly 
done speedups, bug fixes, better error messages, 
made behavior more consistent, etc. but few new 
features



Using GitHub
• Make an account on github

• Use the “fork” feature to make your own Theano repository in your account

• “git clone” the repository to your machine

• “git checkout -b my_feature master” to start working in a branch to develop 
your new feature

• “git add” and “git commit” to log your changes in your branch

• “git push origin my_feature” to send the branch to your fork on your 
GitHub account

• Use the “pull request” feature from your repository’s GitHub page to ask 
the Theano developers to merge your branch into the “master” branch of 
the central repository

• Theano developers will comment on your code and request changes

• Make the changes, use “git add” and “git commit” to track then, and “git push 
origin my_feature” to add them to the pull request



Writing a new Op

• The Op contract

• Op.grad

• How theano.grad works

• verify_grad

• Op.perform

• Op.c_code



The Op contract

• There is no Op base class to inherit from

• Instead, write any class that obeys “the Op 
contract”

• Described here: http://deeplearning.net/
software/theano/extending/op.html#op-s-
contract



Op.grad

• Builds an expression for the product 
between the op’s Jacobian and another 
vector

• theano.grad will pass in the gradient of the 
cost on the outputs as that vector

• Described in detail here: http://
deeplearning.net/software/theano/
extending/op.html#grad



How theano.grad 
works

• https://github.com/Theano/Theano/blob/
master/theano/gradient.py#L354



verify_grad

• Uses numerical differentiation to make sure 
your symbolic differentiation is accurate

• Numerical differentiation can be expensive 
for multiple inputs / outputs. Compensate 
by random linear projection from one input 
to many inputs, many outputs to one 
output.



Op.perform

• Python code for computing the op

• Many operations are slow when 
implemented in python, but this can provide 
a good reference implementation for 
DEBUG_MODE

• Some operations can be implemented 
efficiently by calling a few other object’s C 
bindings from python code



Op.c_code

• Returns a string for C code to carry out 
the op’s calculations

• Change the op’s c_code_cache_version 
each time you change this, otherwise it 
won’t get regenerated



Writing an optimization
#numerically stabilize log softmax (X)
# as  X-X.max(axis=1).dimshuffle(0,'x') - log(exp(X-X.max(axis=1).dimshuffle(0,'x')).sum(axis=1)).dimshuffle(0,'x)
def make_out_pattern(X):
    stabilized_X = X - X.max(axis=1).dimshuffle(0, 'x')
    out_var = stabilized_X - tensor.log(tensor.exp(stabilized_X).sum(
        axis=1)).dimshuffle(0, 'x')
    # tell DEBUG_MODE that it's OK if the original graph produced NaN and the optimized graph does not
    out_var.values_eq_approx = out_var.type.values_eq_approx_remove_nan
    return out_var                 

local_log_softmax = gof.PatternSub(in_pattern=(tensor.log, (softmax, 'x')),
                                    out_pattern=(make_out_pattern, 'x'),
                                   allow_multiple_clients=True)

# Register the optimization
opt.register_specialize(local_log_softmax, name='local_log_softmax')



Views and inplace 
optimizations• Views

• Variables whose representation depends on another 
variable (usually to save memory)

• Example: y = x[i,:]

• Inplace operations

• Example: z = T.nnet.sigmoid(x)

• To save memory, we may want to compute z in the 
same buffer that was used to store x

• But what if someone is still using y?



The DestroyHandler
• User is not allowed to manually insert inplace 

ops

• User builds a graph with non-inplace ops

• Optimizations propose turning ops inplace

• Destroyhandler evaluates graph for cyclical 
dependencies

• If a cycle exists no creation/deletion schedule 
is possible and the optimization is rejected



Writing a GPU op
• Write a CPU version (the actual 

implementation is optional)

• Write a GPU version

• Write an optimization to turn the CPU 
version into a GPU version

• User allocates CPU version

• Optimizations turn it into the GPU version 
when running with device=gpu



Features we’re 
interested in

• Built-in mode for disabling graph optimizations

• Improved shared variables

• Reduced python dependency



Graph optimization 
disabling mode

• A convenient thing to do is run with all ops using 
C code but not doing any graph optimizations 
(basically, do what Torch always does)

• Currently you can do this by manually 
constructing the right mode in your python code

• It would be nice to have a C_CODE_MODE 
default

• Some rough edges on the GPU



Improved shared 
variables

• Shared variables are Theano’s only way of 
modifying a buffer

• Currently each Theano function is compiled 
in terms of specific variables, e.g. buffers

• Could be nice to run the same function on 
many buffers

• GPU serialization issue



Reduced python 
dependency

• Python has a Global Interpreter Lock

• GIL means that multiple threads can’t 
accomplish much CPU parallelism

• Much of the C code depends on numpy 
libraries, and thus python memory 
management


