
Theano Tutorials
Ian Goodfellow

Outline

• 1. Basic usage: How to write a theano
program

• 2. Advanced usage: Symbolic manipulations
and debugging, etc.

• 3A. Internals: how to add your own
features

• 3B. Machine learning with Theano

Session 1: Basic Usage
• Overview of Theano (5 min)

• Python basics (20 min)

• Configuring Theano (10 min)

• Building expressions (45 min)

• Compiling and running expressions (45 min)

• Figuring things out (3 min)

• More advanced expressions (45 min)

• Citing Theano (2 min)

Overview of Theano

• Theano is many things

• Language

• Compiler

• Python library

Overview

• Theano language:

• Operations on scalar, vector, matrix,
tensor, and sparse variables

• Linear algebra

• Element-wise nonlinearities

• Convolution

• Extensible

Overview

• Using Theano:

• define expression

• compile expression

• execute expression

f(x, y) = x+ y

1

Python basics

• Tuples and lists

• Dictionaries

• Functions and classes

• Exceptions

Tuples and lists
>>> l = [1, 2, 3] # make a list
>>> l[1] # index into it
2
>>> l.append(4) # add to it
>>> l
[1, 2, 3, 4]
>>> del l[1] # remove from it
>>> l
[1, 3, 4]
>>> l.insert(1, 3) # insert into it
>>> l
[1, 3, 3, 4]
>>> t = (1, 3, 3, 4) # make a tuple
>>> l == t
False
>>> t[1]
3
>>> del t[1] # tuples are immutable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object doesn't support item deletion
>>> t2 = tuple(l)
>>> t2
(1, 3, 3, 4)

Dictionaries
>>> my_dictionary = {}
>>> my_dictionary[1] = 2 # insert a value
>>> my_dictionary[1] # retrieve a value
2
>>> my_dictionary['1'] = 1 # can use any hashable object as a key
>>> my_dictionary[[]] = 1 # lists are not hashable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> my_dictionary.keys() # see the contents of a dictionary
['1', 1]
>>> for key in my_dictionary: # iterate over them
... print key
...
1
1
>>> del my_dictionary[1] # remove an entry

Functions and classes
>>> def f(x):
... return 2 * x
...
>>> f(1)
2
>>> class A(object): # Must always inherit from something or you get "old-style class"
... def __init__(self, p): # This is the constructor
... self.p = p
... def f(self, x):
... return x ** self.p
...
>>> a = A(3)
>>> a.f(2)
8
>>> class B(A):
... def __init__(self, p):
... A.__init__(self, p)
... def f(self, x):
... return x * p
...
>>> b = B()
>>> b = B(2)
>>> isinstance(b, A)
True

Exceptions
>>> try:
... raise ValueError()
... except ValueError:
... print "Bad value"
...
Bad value
>>> try:
... raise ValueError()
... except TypeError:
... print "Bad type"
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ValueError

Configuring Theano

• ~/.theanorc: Settings you always want

• THEANO_FLAGS: Settings for one job

• theano.config: Settings for right now

~/.theanorc

[global]
device = cpu
floatX = float32

[warn]
argmax_pushdown_bug = False
sum_div_dimshuffle_bug = False
subtensor_merge_bug = False

THEANO_FLAGS

THEANO_FLAGS=”floatX=float64” python my_amazing_theano_script.py

theano.config

>>> import theano
>>> theano.config.floatX = 'float32'
>>> x = theano.tensor.scalar()
>>> x.dtype
'float32'
>>> theano.config.floatX = 'float64'
>>> x = theano.tensor.scalar()
>>> x.dtype
'float64'

Building expressions

• Scalars

• Vectors

• Matrices

• Tensors

• Reductions

• Dimshuffle

Scalar math
from theano import tensor as T
x = T.scalar()
y = T.scalar()
z = x + y
w = z * x
a = T.sqrt(w)
b = T.exp(a)
c = a ** b
d = T.log(c)

Vector math
from theano import tensor as T
x = T.vector()
y = T.vector()
Scalar math applied elementwise
a = x * y
Vector dot product
b = T.dot(x, y)
Broadcasting
c = a + b

Matrix math
from theano import tensor as T
x = T.matrix()
y = T.matrix()
a = T.vector()
Matrix-matrix product
b = T.dot(x, y)
Matrix-vector product
c = T.dot(x, a)

Tensors
• Dimensionality defined by length of

“broadcastable” argument

• Can add (or do other elemwise op) on two
tensors with same dimensionality

• Duplicate tensors along broadcastable axes to
make size match

from theano import tensor as T
tensor3 =
T.TensorType(broadcastable=(False, False,
False), dtype=‘float32’)
x = tensor3()

Reductions
from theano import tensor as T
tensor3 =
T.TensorType(broadcastable=(False,
False, False), dtype=‘float32’)
x = tensor3()
total = x.sum()
marginals = x.sum(axis=(0, 2))
mx = x.max(axis=1)

Dimshuffle
from theano import tensor as T
tensor3 =
T.TensorType(broadcastable=(False,
False, False), dtype=‘float32’)
x = tensor3()
y = x.dimshuffle((2, 1, 0))
a = T.matrix()
b = a.T
Same as b
c = a.dimshuffle((0, 1))
Adding to larger tensor
d = a.dimshuffle((0, 1, ‘x’))
e = a + d

zeros_like and
ones_like

• zeros_like(x) returns a symbolic tensor
with the same shape and dtype as x, but
with every element equal to 0

• ones_like(x) is the same thing, but with 1s

Exercises

• Clone or download the exercises from
https://github.com/goodfeli/
theano_exercises

• Work through the
“01_building_expressions” directory now

Compiling and running
expressions

• theano.function

• shared variables and updates

• compilation modes

• compilation for GPU

• optimizations

theano.function
>>> from theano import tensor as T
>>> x = T.scalar()
>>> y = T.scalar()
>>> from theano import function
>>> # first arg is list of SYMBOLIC inputs
>>> # second arg is SYMBOLIC output
>>> f = function([x, y], x + y)
>>> # Call it with NUMERICAL values
>>> # Get a NUMERICAL output
>>> f(1., 2.)
array(3.0)

Shared variables
• It’s hard to do much with purely functional

programming

• “shared variables” add just a little bit of
imperative programming

• A “shared variable” is a buffer that stores a
numerical value for a theano variable

• Can write to as many shared variables as
you want, once each, at the end of the
function

• Modify outside function with get_value and
set_value

Shared variable example
>>> from theano import shared
>>> x = shared(0.)
>>> from theano.compat.python2x import OrderedDict
>>> updates = OrderedDict()
>>> updates[x] = x + 1
>>> f = function([], updates=updates)
>>> f()
[]
>>> x.get_value()
1.0
>>> x.set_value(100.)
>>> f()
[]
>>> x.get_value()
101.0

Which dict?

• Use theano.compat.python2x.OrderedDict

• Not collections.OrderedDict

• This isn’t available in older versions of python,
and will limit the portability of your code

• Not {} aka dict

• The iteration order of this built-in class is not
deterministic (thanks, Python!) so if Theano
accepted this, the same script could compile
different C programs each time you run it

Compilation modes

• Can compile in different modes to get
different kinds of programs

• Can specify these modes very precisely
with arguments to theano.function

• Can use a few quick presets with
environment variable flags

Example preset
compilation modes

• FAST_RUN: default. Spends a lot of time on
compilation to get an executable that runs
fast.

• FAST_COMPILE: Doesn’t spend much time
compiling. Executable usually uses python
instead of compiled C code. Runs slow.

• DEBUG_MODE: Adds lots of checks.
Raises error messages in situations other
modes regard as fine.

Compilation for GPU
• Theano only supports 32 bit on GPU

• CUDA supports 64 bit, but is slow

• T.fscalar, T.fvector, T.fmatrix are all 32 bit

• T.scalar, T.vector, T.matrix resolve to 32 bit
or 64 bit depending on theano’s floatX flag

• floatX is float64 by default, set it to
float32

• Set device flag to gpu (or a specific gpu, like
gpu0)

Optimizations

• Theano changes the symbolic expressions
you write before converting them to C
code

• It makes them faster

• (x+y)+(x+y) -> 2 (x + y)

• It makes them more stable

• exp(a)/exp(a).sum(axis=1)->softmax(a)

Optimizations
• Sometimes optimizations discard error

checking and produce incorrect output
rather than an exception

>>> x = T.scalar()
>>> f = function([x], x/x)
>>> f(0.)
array(1.0)

Exercises

• Work through the
“02_compiling_and_running” directory
now

Figuring things out

• Docstrings:

• Read the source code

• help(foo): shows the docstring on foo

• http://deeplearning.net/software/theano/

• theano-users@googlegroups.com

Exercises

• Work through the
“03_advanced_expressions” directory now

Citing Theano

• Please cite both of the following papers in
all work that uses Theano:

• Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Bergstra, James, Goodfellow, Ian, Bergeron, Arnaud, Bouchard, Nicolas, and
Bengio, Yoshua. Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop, 2012.

• Bergstra, James, Breuleux, Olivier, Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guillaume, Turian, Joseph, Warde-
Farley, David, and Bengio, Yoshua. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010. Oral Presentation.

