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Preface to the Second Edition

In God we trust, all others bring data.

~William Edwards Deming (1900-1993)!

We have been gratified by the popularity of the first edition of The
Elements of Statistical Learning. This, along with the fast pace of research
in the statistical learning field, motivated us to update our book with a
second edition.

We have added four new chapters and updated some of the existing
chapters. Because many readers are familiar with the layout of the first
edition, we have tried to change it as little as possible. Here is a summary
of the main changes:

1On the Web, this quote has been widely attributed to both Deming and Robert W.
Hayden; however Professor Hayden told us that he can claim no credit for this quote,
and ironically we could find no “data” confirming that Deming actually said this.
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Chapter

What’s new

1. Introduction
2. Overview of Supervised Learning
3. Linear Methods for Regression

4. Linear Methods for Classification
5. Basis Expansions and Regulariza-

LAR algorithm and generalizations
of the lasso

Lasso path for logistic regression
Additional illustrations of RKHS

tion
6. Kernel Smoothing Methods
7. Model Assessment and Selection

Strengths of cross-

validation

and pitfalls

8. Model Inference and Averaging
9. Additive Models, Trees, and
Related Methods

10. Boosting and Additive Trees New example from ecology; some
material split off to Chapter 16.
Bayesian neural nets and the NIPS
2003 challenge

Path algorithm for SVM classifier

11. Neural Networks

12. Support Vector Machines and
Flexible Discriminants

13. Prototype  Methods
Nearest-Neighbors

14. Unsupervised Learning

and

Spectral clustering, kernel PCA,
sparse PCA, non-negative matrix
factorization archetypal analysis,
nonlinear  dimension  reduction,
Google page rank algorithm, a
direct approach to ICA

15. Random Forests New
16. Ensemble Learning New
17. Undirected Graphical Models New
18. High-Dimensional Problems New

Some further notes:

e Qur first edition was unfriendly to colorblind readers; in particular,
we tended to favor red/green contrasts which are particularly trou-
blesome. We have changed the color palette in this edition to a large
extent, replacing the above with an /blue contrast.

e We have changed the name of Chapter 6 from “Kernel Methods” to
“Kernel Smoothing Methods”, to avoid confusion with the machine-
learning kernel method that is discussed in the context of support vec-
tor machines (Chapter 11) and more generally in Chapters 5 and 14.

e In the first edition, the discussion of error-rate estimation in Chap-
ter 7 was sloppy, as we did not clearly differentiate the notions of
conditional error rates (conditional on the training set) and uncondi-
tional rates. We have fixed this in the new edition.
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e Chapters 15 and 16 follow naturally from Chapter 10, and the chap-
ters are probably best read in that order.

e In Chapter 17, we have not attempted a comprehensive treatment
of graphical models, and discuss only undirected models and some
new methods for their estimation. Due to a lack of space, we have
specifically omitted coverage of directed graphical models.

e Chapter 18 explores the “p > N” problem, which is learning in high-
dimensional feature spaces. These problems arise in many areas, in-
cluding genomic and proteomic studies, and document classification.

We thank the many readers who have found the (too numerous) errors in
the first edition. We apologize for those and have done our best to avoid er-
rors in this new edition. We thank Mark Segal, Bala Rajaratnam, and Larry
Wasserman for comments on some of the new chapters, and many Stanford
graduate and post-doctoral students who offered comments, in particular
Mohammed AlQuraishi, John Boik, Holger Hoefling, Arian Maleki, Donal
McMahon, Saharon Rosset, Babak Shababa, Daniela Witten, Ji Zhu and
Hui Zou. We thank John Kimmel for his patience in guiding us through this
new edition. RT dedicates this edition to the memory of Anna McPhee.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Stanford, California
August 2008
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Preface to the First Edition

We are drowning in information and starving for knowledge.

—Rutherford D. Roger

The field of Statistics is constantly challenged by the problems that science
and industry brings to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical
problems have exploded both in size and complexity. Challenges in the
areas of data storage, organization and searching have led to the new field
of “data mining”; statistical and computational problems in biology and
medicine have created “bioinformatics.” Vast amounts of data are being
generated in many fields, and the statistician’s job is to make sense of it
all: to extract important patterns and trends, and understand “what the
data says.” We call this learning from data.

The challenges in learning from data have led to a revolution in the sta-
tistical sciences. Since computation plays such a key role, it is not surprising
that much of this new development has been done by researchers in other
fields such as computer science and engineering.

The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is to pre-
dict the value of an outcome measure based on a number of input measures;
in unsupervised learning, there is no outcome measure, and the goal is to
describe the associations and patterns among a set of input measures.

This is page xi
Printer: Opaque this
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This book is our attempt to bring together many of the important new
ideas in learning, and explain them in a statistical framework. While some
mathematical details are needed, we emphasize the methods and their con-
ceptual underpinnings rather than their theoretical properties. As a result,
we hope that this book will appeal not just to statisticians but also to
researchers and practitioners in a wide variety of fields.

Just as we have learned a great deal from researchers outside of the field
of statistics, our statistical viewpoint may help others to better understand
different aspects of learning:

There is no true interpretation of anything; interpretation is a
vehicle in the service of human comprehension. The value of
interpretation is in enabling others to fruitfully think about an
idea.

—Andreas Buja

We would like to acknowledge the contribution of many people to the
conception and completion of this book. David Andrews, Leo Breiman,
Andreas Buja, John Chambers, Bradley Efron, Geoffrey Hinton, Werner
Stuetzle, and John Tukey have greatly influenced our careers. Balasub-
ramanian Narasimhan gave us advice and help on many computational
problems, and maintained an excellent computing environment. Shin-Ho
Bang helped in the production of a number of the figures. Lee Wilkinson
gave valuable tips on color production. Ilana Belitskaya, Eva Cantoni, Maya
Gupta, Michael Jordan, Shanti Gopatam, Radford Neal, Jorge Picazo, Bog-
dan Popescu, Olivier Renaud, Saharon Rosset, John Storey, Ji Zhu, Mu
Zhu, two reviewers and many students read parts of the manuscript and
offered helpful suggestions. John Kimmel was supportive, patient and help-
ful at every phase; MaryAnn Brickner and Frank Ganz headed a superb
production team at Springer. Trevor Hastie would like to thank the statis-
tics department at the University of Cape Town for their hospitality during
the final stages of this book. We gratefully acknowledge NSF and NIH for
their support of this work. Finally, we would like to thank our families and
our parents for their love and support.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Stanford, California
May 2001

The quiet statisticians have changed our world; not by discov-
ering new facts or technical developments, but by changing the
ways that we reason, experiment and form our opinions ....

~Jan Hacking
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1

Introduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack. The prediction is to be based on demo-
graphic, diet and clinical measurements for that patient.

Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

Identify the numbers in a handwritten ZIP code, from a digitized
image.

Estimate the amount of glucose in the blood of a diabetic person,
from the infrared absorption spectrum of that person’s blood.

Identify the risk factors for prostate cancer, based on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have
an outcome measurement, usually quantitative (such as a stock price) or
categorical (such as heart attack/no heart attack), that we wish to predict
based on a set of features (such as diet and clinical measurements). We
have a training set of data, in which we observe the outcome and feature

This is page 1
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2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

measurements for a set of objects (such as people). Using this data we build
a prediction model, or learner, which will enable us to predict the outcome
for new unseen objects. A good learner is one that accurately predicts such
an outcome.

The examples above describe what is called the supervised learning prob-
lem. It is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only the features and have no measurements of the outcome.
Our task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of Chapter 14.

Here are some examples of real learning problems that are discussed in
this book.

Example 1: Email Spam

The data for this example consists of information from 4601 email mes-
sages, in a study to try to predict whether the email was junk email, or
“spam.” The objective was to design an automatic spam detector that
could filter out spam before clogging the users’ mailboxes. For all 4601
email messages, the true outcome (email type) email or spam is available,
along with the relative frequencies of 57 of the most commonly occurring
words and punctuation marks in the email message. This is a supervised
learning problem, with the outcome the class variable email/spam. It is also
called a classification problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule such as

if (%george < 0.6) & (%you > 1.5)  then spam
else email.

Another form of a rule might be:

if (0.2 %you — 0.3 - %george) >0  then spam
else email.
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FIGURE 1.1. Scatterplot matriz of the prostate cancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are categorical.

For this problem not all errors are equal; we want to avoid filtering out
good email, while letting spam get through is not desirable but less serious
in its consequences. We discuss a number of different methods for tackling
this learning problem in the book.

Ezxample 2: Prostate Cancer

The data for this example, displayed in Figure 1.1!, come from a study
by Stamey et al. (1989) that examined the correlation between the level of

IThere was an error in these data in the first edition of this book. Subject 32 had
a value of 6.1 for lweight, which translates to a 449 gm prostate! The correct value is
44.9 gm. We are grateful to Prof. Stephen W. Link for alerting us to this error.
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FIGURE 1.2. Ezamples of handwritten digits from U.S. postal envelopes.

prostate specific antigen (PSA) and a number of clinical measures, in 97
men who were about to receive a radical prostatectomy.

The goal is to predict the log of PSA (1psa) from a number of measure-
ments including log cancer volume (lcavol), log prostate weight lweight,
age, log of benign prostatic hyperplasia amount 1bph, seminal vesicle in-
vasion svi, log of capsular penetration lcp, Gleason score gleason, and
percent of Gleason scores 4 or 5 pggd5. Figure 1.1 is a scatterplot matrix
of the variables. Some correlations with 1psa are evident, but a good pre-
dictive model is difficult to construct by eye.

This is a supervised learning problem, known as a regression problem,
because the outcome measurement is quantitative.

Example 3: Handwritten Digit Recognition

The data from this example come from the handwritten ZIP codes on
envelopes from U.S. postal mail. Each image is a segment from a five digit
ZIP code, isolating a single digit. The images are 16 x 16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The images have been normalized to have approximately the same size
and orientation. The task is to predict, from the 16 x 16 matrix of pixel
intensities, the identity of each image (0,1,...,9) quickly and accurately. If
it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a classification problem
for which the error rate needs to be kept very low to avoid misdirection of
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mail. In order to achieve this low error rate, some objects can be assigned
to a “don’t know” category, and sorted instead by hand.

Example 4: DNA FExpression Microarrays

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relative to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random sample of 100 rows are shown. The fig-
ure displays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion profiles across genes?

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

(c) do certain genes show very high (or low) expression for certain cancer
samples?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples—with the response variable being
the level of expression. However, it is probably more useful to view it as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830—dimensional space, which we want
to cluster together in some way.
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FIGURE 1.3. DNA microarray data: expression matriz of 6830 genes (rows)
and 64 samples (columns), for the human tumor data. Only a random sample
of 100 rows are shown. The display is a heat map, ranging from bright green
(negative, under expressed) to bright red (positive, over expressed). Missing values
are gray. The rows and columns are displayed in a randomly chosen order.
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Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics including linear regression.

We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlying concepts and considerations
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How This Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence, after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods such as
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

In Chapters 9-13 we describe a series of structured methods for su-
pervised learning, with Chapters 9 and 11 covering regression and Chap-
ters 12 and 13 focusing on classification. Chapter 14 describes methods for
unsupervised learning. Two recently proposed techniques, random forests
and ensemble learning, are discussed in Chapters 15 and 16. We describe
undirected graphical models in Chapter 17 and finally we study high-
dimensional problems in Chapter 18.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including how the computations scale
with the number of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.
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We recommend that Chapters 1-4 be first read in sequence. Chapter 7
should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.

(\lene

0
The symbol indicates a technically difficult section, one that can
be skipped without interrupting the flow of the discussion.

Book Website
The website for this book is located at

http://www-stat.stanford.edu/ElemStatLearn

It contains a number of resources, including many of the datasets used in
this book.

Note for Instructors

We have successively used the first edition of this book as the basis for a
two-quarter course, and with the additional materials in this second edition,
it could even be used for a three-quarter sequence. Exercises are provided at
the end of each chapter. It is important for students to have access to good
software tools for these topics. We used the R and S-PLUS programming
languages in our courses.
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Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapter 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the predictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. In the pattern recognition literature the term features is preferred,
which we use as well. The outputs are called the responses, or classically
the dependent variables.

2.2 Variable Types and Terminology

The outputs vary in nature among the examples. In the glucose prediction
example, the output is a quantitative measurement, where some measure-
ments are bigger than others, and measurements close in value are close
in nature. In the famous Iris discrimination example due to R. A. Fisher,
the output is qualitative (species of Iris) and assumes values in a finite set
G = { Virginica, Setosa and Versicolor}. In the handwritten digit example
the output is one of 10 different digit classes: G = {0,1,...,9}. In both of

This is page 9
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10 2. Overview of Supervised Learning

these there is no explicit ordering in the classes, and in fact often descrip-
tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and clas-
sification when we predict qualitative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can have some of each of qual-
itative and quantitative input variables. These have also led to distinctions
in the types of methods that are used for prediction: some methods are
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitative variables are typically represented numerically by codes. The
easiest case is when there are only two classes or categories, such as “suc-
cess” or “failure,” “survived” or “died.” These are often represented by a
single binary digit or bit as 0 or 1, or else by —1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is “on” at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X;. Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Observed values are written in lowercase; hence the
ith observed value of X is written as x; (where z; is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example, a
set of N input p-vectors z;, i = 1,..., N would be represented by the N xp
matrix X. In general, vectors will not be bold, except when they have N
components; this convention distinguishes a p-vector of inputs z; for the



2.3 Least Squares and Nearest Neighbors 11

ith observation from the N-vector x; consisting of all the observations on
variable X;. Since all vectors are assumed to be column vectors, the 7th
row of X is 21, the vector transpose of z;.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a good prediction of the output Y,
denoted by Y (pronounced “y-hat”). If Y takes values in IR then so should
Y'; likewise for categorical outputs, G should take values in the same set G
associated with G.

For a two-class GG, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions Y will
typically lie in [0, 1], and we can assign to G the class label according to
whether ¢ > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a set of measurements (x;,y;) or (x;,¢:), 1 =
1,..., N, known as the training data, with which to construct our prediction
rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
linear model fit by least squares and the k-nearest-neighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but can be unstable.

2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
XT = (X1, Xo,...,X,), we predict the output Y via the model

P
Y =B+ X8 (2.1)

j=1

The term BO is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include BO in
the vector of coefficients B , and then write the linear model in vector form
as an inner product

Y =X"5, (2.2)



12 2. Overview of Supervised Learning

where X7 denotes vector or matrix transpose (X being a column vector).
Here we are modeling a single output, so Yisa scalar; in general Y can be
a K—vector, in which case 8 would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input—output space, (X, Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an affine set cutting the Y-axis at the point
(0, BO). From now on we assume that the intercept is included in £.

Viewed as a function over the p-dimensional input space, f(X) = XT3
is linear, and the gradient f’(X) = g is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coefficients [ to minimize the
residual sum of squares

N
RSS(8) = _(yi -« B)*. (2.3)
i=1
RSS(p) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS(8) = (v — XB)" (y — X5), (2.4)

where X is an N X p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. 5 we get
the normal equations

XT(y - XpB) =0. (2.5)
If XX is nonsingular, then the unique solution is given by
f=(XTX)"'XTy, (2.6)

and the fitted value at the ith input z; is ¢; = g(x;) = x?ﬁ At an arbi-
trary input xo the prediction is §(x¢) = :EOTB The entire fitted surface is
characterized by the p parameters B Intuitively, it seems that we do not
need a very large data set to fit such a model.

Let’s look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs X; and
Xs. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values BLUE or ,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for BLUE and 1 for . The fitted values Y
are converted to a fitted class variable (@ according to the rule

. ifY > 0.
G = ity >05 (2.7)
BLUE ifY <0.5.
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Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by :vTB = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR? classified as ORANGE corresponds to {z: JJTB > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : 2Th = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of
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the component Gaussians to use, and then generates an observation from
the chosen density. In the case of one Gaussian per class, we will see in
Chapter 4 that a linear decision boundary is the best one can do, and that
our estimate is almost optimal. The region of overlap is inevitable, and
future data to be predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difficult to obtain.

We now look at another classification and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far better suited to the second scenario.

2.3.2  Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set 7 clos-
est in input space to x to form Y. Specifically, the k-nearest neighbor fit
for Y is defined as follows:

vw=r Y w (28)

x; €Ny (x)

where Ny (z) is the neighborhood of x defined by the k closest points z; in
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we find the k£ observations with
x; closest to x in input space, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method
of fitting. Thus Y is the proportion of ’s in the neighborhood, and
so assigning class to G if Y > 0.5 amounts to a majority vote in
the neighborhood. The colored regions indicate all those points in input
space classified as BLUE or by such a rule, in this case found by
evaluating the procedure on a fine grid in input space. We see that the
decision boundaries that separate the BLUE from the regions are far
more irregular, and respond to local clusters where one class dominates.

Figure 2.3 shows the results for 1-nearest-neighbor classification: Y is
assigned the value gy, of the closest point x, to x in the training data. In
this case the regions of classification can be computed relatively easily, and
correspond to a Voronoi tessellation of the training data. Each point x;
has an associated tile bounding the region for which it is the closest input
point. For all points z in the tile, G(z) = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although k£ = 1 would
be an unlikely choice.
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15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of %k, and will always be 0
for kK = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k£ = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.



16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0,0RANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3  From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N((1,0)7,I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mj, at random with probability 1/10, and
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FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The orange curves are test and the blue are training er-
ror for k-nearest-neighbor classification. The results for linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.

then generated a N(my,I/5), thus leading to a mixture of Gaussian clus-
ters for each class. Figure 2.4 shows the results of classifying 10,000 new
observations generated from the model. We compare the results for least
squares and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.
The following list describes some ways in which these simple procedures
have been enhanced:

e Kernel methods use weights that decrease smoothly to zero with dis-
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.
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e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

e Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
linearly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IRP denote a
real valued random input vector, and ¥ € IR a real valued random out-
put variable, with joint distribution Pr(X,Y’). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a loss
function L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))2.
This leads us to a criterion for choosing f,

EPE(f) E(Y — f(X))? (2.9)

- / ly — £(2)] Pr(dw, dy), (2.10)

the expected (squared) prediction error . By conditioning! on X, we can
write EPE as
EPE(f) = ExEy|x ([Y — f(X)]?|X) (211)

and we see that it suffices to minimize EPE pointwise:
f(z) = argmin Ey x ([Y — ¢]*|X = z). (2.12)

The solution is
f(z) = B(Y|X =), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = x is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point x, we might ask for the average of all

L Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly.
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those y;s with input x; = x. Since there is typically at most one observation
at any point x, we settle for

f(x) = Ave(ys|z; € Ni(z)), (2.14)

where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k points in 7 closest to z. Two approximations are happening here:

e expectation is approximated by averaging over sample data;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to x, and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X,Y’), one can show that as N,k — oo such that k/N — 0,
f(#) — BE(Y|X = z). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(z) is approximately
linear in its arguments:

flz) = 2" B. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(x) into EPE (2.9) and differentiating
we can solve for S theoretically:

B =[BXXD'E(XY). (2.16)

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(x) is well approximated by a globally linear
function.
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e k-nearest neighbors assumes f(z) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

FX) =" fi(X5). (2.17)
j=1

This retains the additivity of the linear model, but each coordinate function
fj is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)7 What happens if we replace the
L loss function with the Li: E|Y — f(X)|? The solution in this case is the
conditional median,

f(x) = median(Y'|X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L; criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G , the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,
where L(k,¢) is the price paid for classifying an observation belonging to
class Gy as Gy. Most often we use the zero—one loss function, where all
misclassifications are charged a single unit. The expected prediction error
is

EPE = E[L(G, G(X))], (2.19)

where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K
EPE = Ex » LGk, G(X)[Pr(Gx|X) (2-20)
k=1
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Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).

and again it suffices to minimize EPE pointwise:
K
G(z) = argmingeg ¥ L(Gk, g)Pr(Ge| X = ). (2.21)

k=1

With the 0-1 loss function this simplifies to

G(z) = argmin g[1 — Pr(g|X = z)] (2.22)
or simply
G(z) = Gy if Pr(Gp| X = z) = meaéiPr(g|X =2x). (2.23)
g

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.
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Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G,|X) if G corresponded to ¥ = 1.
Likewise for a K-class problem, E(Y;|X) = Pr(G = Gi|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
f(X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4.

2.5 Local Methods in High Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any x
and average them. This approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction r of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e, () = r'/?. In ten dimensions e1¢(0.01) =
0.63 and e1(0.1) = 0.80, while the entire range for each input is only 1.0.
So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.

Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

distance from the origin to the closest data point is given by the expression

1 1/N

d(p, N) = (1- 5 )Up (2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p, N) ~ 0.52, more than
halfway to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N/?_ where p is the dimension of the input space and N is the
sample size. Thus, if N; = 100 represents a dense sample for a single input
problem, then Njg = 100'° is the sample size required for the same sam-
pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing examples x; generated uniformly on [—1,1]P. Assume that the true
relationship between X and Y is

Y = f(X) = e 8IXIF,

without any measurement error. We use the 1-nearest-neighbor rule to
predict yo at the test-point xg = 0. Denote the training set by 7. We can
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compute the expected prediction error at xg for our procedure, averaging
over all such samples of size 1000. Since the problem is deterministic, this
is the mean squared error (MSE) for estimating f(0):

MSE(zo) E7(f(z0) — fo]*
E7[§o — Er(90))* + [E7 (o) — f(z0)]?

= Varr(go) + Bias?(f). (2.25)

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias—variance decomposition. Unless the nearest neighbor is at 0,
Jo will be smaller than f(0) in this example, and so the average estimate
will be biased downward. The variance is due to the sampling variance of
the 1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more often than not, and hence the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

Y =XT8+¢, (2.26)

where € ~ N(0,0%) and we fit the model by least squares to the train-
ing data. For an arbitrary test point xg, we have gy = xgﬁ, which can
be written as o = o 8 + 25\7:1 li(xo)e;, where £;(x) is the ith element
of X(XTX)~1zq. Since under this model the least squares estimates are
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FIGURE 2.7. A simulation example, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The input features are uniformly
distributed in [—1,1]" for p=1,...,10 The top left panel shows the target func-
tion (no noise) inR: f(X) = 678HXH2, and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
increases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-right panel shows the MSE, squared bias and
variance curves as a function of dimension p.
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FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F(X) = (X1 + 1)°. The
variance dominates.

unbiased, we find that

EPE(z0) = Egu0E7(yo — fi0)?
= Var(yolzo) + Er[go — Evdo]* + [E7do — x{ 8]
= Var(yo|zo) + Vars(jo) + Bias? (i)
0?2 + Bral (XTX) tzgo? + 02 (2.27)

Here we have incurred an additional variance o2 in the prediction error,
since our target is not deterministic. There is no bias, and the variance
depends on zq. If N is large and T were selected at random, and assuming
E(X) =0, then XTX — NCov(X) and

E.,EPE(z9) ~ EgalCov(X) t2go?/N + o?
= trace[Cov(X) *Cov(zo)]o?/N + o
= o*(p/N)+ o> (2.28)

Here we see that the expected EPE increases linearly as a function of p,
with slope 0?/N. If N is large and/or o2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality. Some of the technical details in (2.27) and (2.28) are
derived in Exercise 2.5.

Figure 2.9 compares 1-nearest neighbor vs. least squares in two situa-
tions, both of which have the form Y = f(X) + ¢, X uniform as before,
and € ~ N(0,1). The sample size is N = 500. For the orange curve, f(x)
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FIGURE 2.9. The curves show the expected prediction error (at xo = 0) for
1-nearest neighbor relative to least squares for the model Y = f(X) + . For the
orange curve, f(x) = x1, while for the blue curve f(x) = %(wl +1)3.

is linear in the first coordinate, for the blue curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in this case, and as discussed above the EPE is slightly above o2 = 1.
The EPE for 1-nearest neighbor is always above 2, since the variance of
F(wo) in this case is at least 02, and the ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could manufacture
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in 1-nearest neighbor is substantially
larger. However, if the assumptions are wrong, all bets are off and the
1-nearest neighbor may dominate. We will see that there is a whole spec-
trum of models between the rigid linear models and the extremely flexible
1-nearest-neighbor models, each with their own assumptions and biases,
which have been proposed specifically to avoid the exponential growth in
complexity of functions in high dimensions by drawing heavily on these
assumptions.

Before we delve more deeply, let us elaborate a bit on the concept of
statistical models and see how they fit into the prediction framework.
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2.6 Statistical Models, Supervised Learning and
Function Approximation

Our goal is to find a useful approximation f(z) to the function f(z) that
underlies the predictive relationship between the inputs and outputs. In the
theoretical setting of Section 2.4, we saw that squared error loss lead us
to the regression function f(x) = E(Y|X = x) for a quantitative response.
The class of nearest-neighbor methods can be viewed as direct estimates
of this conditional expectation, but we have seen that they can fail in at
least two ways:

e if the dimension of the input space is high, the nearest neighbors need
not be close to the target point, and can result in large errors;

e if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f(z), in many cases specif-
ically designed to overcome the dimensionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y")

Suppose in fact that our data arose from a statistical model
Y = f(X) +e¢, (2.29)

where the random error € has E(¢) = 0 and is independent of X. Note that
for this model, f(z) = E(Y|X = ), and in fact the conditional distribution
Pr(Y]X) depends on X only through the conditional mean f(x).

The additive error model is a useful approximation to the truth. For
most systems the input—output pairs (X,Y) will not have a deterministic
relationship Y = f(X). Generally there will be other unmeasured variables
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures from a deterministic re-
lationship via the error €.

For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in IR?.
The training data consist of colored examples from the map {z;,g;}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the = location of the training points.
For the moment we will not pursue such problems, but will see that they
can be handled by techniques appropriate for the error-based models.

The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind
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when we average squared errors uniformly in our EPE criterion. With such
a model it becomes natural to use least squares as a data criterion for
model estimation as in (2.1). Simple modifications can be made to avoid
the independence assumption; for example, we can have Var(Y|X = z) =
o(x), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y|X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs Gj in this case the tar-
get function p(X) is the conditional density Pr(G|X), and this is modeled
directly. For example, for two-class data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 — p(X). Thus if YV is
the 0-1 coded version of G, then E(Y|X = z) = p(x), but the variance
depends on z as well: Var(Y|X = ) = p(z)[1 — p(x)].

2.6.2  Supervised Learning

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model Y = f(X)+¢
is a reasonable assumption. Supervised learning attempts to learn f by
example through a teacher. One observes the system under study, both
the inputs and outputs, and assembles a training set of observations 7 =
(zi,yi), i =1,...,N. The observed input values to the system x; are also
fed into an artificial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f (z;) in response to the in-
puts. The learning algorithm has the property that it can modify its in-
put/output relationship f in response to differences y; — f (2;) between the
original and generated outputs. This process is known as learning by exam-
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be close enough to be useful for all sets of inputs likely
to be encountered in practice.

2.6.3  Function Approximation

The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied mathe-
matics and statistics has been from the perspective of function approxima-
tion and estimation. Here the data pairs {z;,y;} are viewed as points in a
(p + 1)-dimensional Euclidean space. The function f(x) has domain equal
to the p-dimensional input subspace, and is related to the data via a model
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such as y; = f(x;) + ;. For convenience in this chapter we will assume the
domain is IR?, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f(x) for all z in some region of IRP, given the representations in 7.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.

Many of the approximations we will encounter have associated a set of
parameters 6 that can be modified to suit the data at hand. For example,
the linear model f(x) = 73 has § = 3. Another class of useful approxi-
mators can be expressed as linear basis expansions

K
fo(z) = th($)9k, (2.30)
k=1

where the hj are a suitable set of functions or transformations of the input
vector x. Traditional examples are polynomial and trigonometric expan-
sions, where for example hj might be 2%, x123, cos(z1) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

1

() = 1+ exp(—aT )’

(2.31)
We can use least squares to estimate the parameters 6 in fy as we did
for the linear model, by minimizing the residual sum-of-squares

N

RSS(0) = > (i — fo(r:))” (2.32)

i=1

as a function of #. This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p + 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. The noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(6).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general
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FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters
of fo(x) are chosen so as to minimize the sum-of-squared vertical errors.

principle for estimation is mazimum likelihood estimation. Suppose we have
a random sample y;, i = 1,..., N from a density Pry(y) indexed by some
parameters 6. The log-probability of the observed sample is

N
= Zlog Pro(y;). (2.33)

The principle of maximum likelihood assumes that the most reasonable
values for 0 are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fy(X) + &, with
e ~ N(0,0?), is equivalent to maximum likelihood using the conditional
likelihood

Pr(Y|X,0) = N(fo(X),0?). (2.34)

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

N 1O
L(9) = -5 log(27) — Nlogo — 357 (yi — fo(x:))?, (2.35)
i=1
and the only term involving 6 is the last, which is RSS(6) up to a scalar
negative multiplier.

A more interesting example is the multinomial likelihood for the regres-
sion function Pr(G|X) for a qualitative output G. Suppose we have a model
Pr(G = Gy|X = x) = pro(x), k = 1,..., K for the conditional probabil-
ity of each class given X, indexed by the parameter vector 6. Then the
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log-likelihood (also referred to as the cross-entropy) is

N
L(0) = Zlogpgi’g(xi)7 (2.36)
i=1

and when maximized it delivers values of 6 that best conform with the data
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we discuss further the need for such classes.

2.7.1 Difficulty of the Problem
Consider the RSS criterion for an arbitrary function f,

N

RSS(f) = > (yi — f(@:))*. (2.37)

i=1

Minimizing (2.37) leads to infinitely many solutions: any function f passing
through the training points (z;,y;) is a solution. Any particular solution
chosen might be a poor predictor at test points different from the training
points. If there are multiple observation pairs x;,y;¢, £ = 1,..., N; at each
value of z;, the risk is limited. In this case, the solutions pass through
the average values of the y;; at each z;; see Exercise 2.6. The situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and densely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for finite /N, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometimes encoded via the parametric representation
of fy, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this
book. One thing should be clear, though. Any restrictions imposed on f
that lead to a unique solution to (2.37) do not really remove the ambiguity
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caused by the multiplicity of solutions. There are infinitely many possible
restrictions, each leading to a unique solution, so the ambiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as complexity restrictions of one kind or another. This usually
means some kind of regular behavior in small neighborhoods of the input
space. That is, for all input points x sufficiently close to each other in
some metric, f exhibits some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

The strength of the constraint is dictated by the neighborhood size. The
larger the size of the neighborhood, the stronger the constraint, and the
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraint depends on the metric used. Some methods,
such as kernel and local regression and tree-based methods, directly specify
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input g, the function does not change much, and
so close outputs can be averaged to produce f (zp). Other methods such
as splines, neural networks and basis-function methods implicitly define
neighborhoods of local behavior. In Section 5.4.1 we discuss the concept
of an equivalent kernel (see Figure 5.8 on page 157), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above—peaked at the target point and falling away smoothly
away from it.

One fact should be clear by now. Any method that attempts to pro-
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions—again the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated—and often implicit or adaptive—metric for measuring neighbor-
hoods, which basically does not allow the neighborhood to be simultane-
ously small in all directions.

2.8 Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions
imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since detailed descriptions
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are given in later chapters. Each of the classes has associated with it one
or more parameters, sometimes appropriately called smoothing parameters,
that control the effective size of the local neighborhood. Here we describe
three broad classes.

2.8.1 Roughness Penalty and Bayesian Methods

Here the class of functions is controlled by explicitly penalizing RSS(f)
with a roughness penalty

PRSS(f;\) = RSS(f) + A (f). (2.38)

The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
smoothing spline for one-dimensional inputs is the solution to the penalized
least-squares criterion

N

PRSS(fi) = Y (s — f(@)* A [ 1" (@Pde. (239)

i=1

The roughness penalty here controls large values of the second derivative
of f, and the amount of penalty is dictated by A > 0. For A = 0 no penalty
is imposed, and any interpolating function will do, while for A = oo only
functions linear in = are permitted.

Penalty functionals J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J(f) = ?:1 J(f;) are used in conjunction with
additive functions f(X) = >-"_, f;(X;) to create additive models with
smooth coordinate functions. Similarly, projection pursuit regression mod-
els have f(X) = Z%Zl gm(al X) for adaptively chosen directions a,, and
the functions ¢, can each have an associated roughness penalty.

Penalty function, or reqularization methods, express our prior belief that
the type of functions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corre-
sponds to a log-prior, and PRSS(f; ) the log-posterior distribution, and
minimizing PRSS(f; A\) amounts to finding the posterior mode. We discuss
roughness-penalty approaches in Chapter 5 and the Bayesian paradigm in
Chapter 8.

2.8.2 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the re-
gression function or conditional expectation by specifying the nature of the
local neighborhood, and of the class of regular functions fitted locally. The
local neighborhood is specified by a kernel function K(xo, z) which assigns
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weights to points z in a region around z (see Figure 6.1 on page 192). For
example, the Gaussian kernel has a weight function based on the Gaussian
density function

1 x — zol|?
Ky (zg,x) = 3, €XP {—H”\OH] (2.40)

and assigns weights to points that die exponentially with their squared
Euclidean distance from xy. The parameter A corresponds to the variance
of the Gaussian density, and controls the width of the neighborhood. The
simplest form of kernel estimate is the Nadaraya—Watson weighted average

7 _ fo’il K (zo,7:)yi
flxo) = Sy Ka(zo, zi)

In general we can define a local regression estimate of f(zg) as f;(zo),

(2.41)

where § minimizes
N
RSS(fo, x0) = > Kx(zo, z:)(yi — fo(:))?, (2.42)
i=1

and fy is some parameterized function, such as a low-order polynomial.
Some examples are:

e fo(x) = 0o, the constant function; this results in the Nadaraya—
Watson estimate in (2.41) above.

e fo(x) = 0y + 61z gives the popular local linear regression model.

Nearest-neighbor methods can be thought of as kernel methods having a
more data-dependent metric. Indeed, the metric for k-nearest neighbors is

Ky (z,z0) = I([|z — xo|| < [|z) — 20l])s

where ;) is the training observation ranked kth in distance from zg, and
I(S) is the indicator of the set S.

These methods of course need to be modified in high dimensions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.3 Basis Functions and Dictionary Methods

This class of methods includes the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f is a linear expansion of basis functions

M
fo@) =Y Omhum (), (2.43)
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where each of the h,, is a function of the input x, and the term linear here
refers to the action of the parameters 6. This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in = of total degree M.

For one-dimensional x, polynomial splines of degree K can be represented
by an appropriate sequence of M spline basis functions, determined in turn
by M — K knots. These produce functions that are piecewise polynomials
of degree K between the knots, and joined up with continuity of degree
K — 1 at the knots. As an example consider linear splines, or piecewise
linear functions. One intuitively satisfying basis consists of the functions
bi(z) = 1, ba(z) = z, and byya(x) = (@ — tp)y, m = 1,..., M — 2,
where t,, is the mth knot, and z; denotes positive part. Tensor products
of spline bases can be used for inputs with dimensions larger than one
(see Section 5.2, and the CART and MARS models in Chapter 9.) The
parameter 6 can be the total degree of the polynomial or the number of
knots in the case of splines.

Radial basis functions are symmetric p-dimensional kernels located at
particular centroids,

M
fo(x) =" Kx, (Hm>2)0m; (2.44)

m=1

for example, the Gaussian kernel K (u,x) = e~lle=nll*/2X ig popular.

Radial basis functions have centroids pu,, and scales A, that have to
be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. Including these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice, shortcuts such as greedy
algorithms or two stage processes are used. Section 6.7 describes some such
approaches.

A single-layer feed-forward neural network model with linear output
weights can be thought of as an adaptive basis function method. The model
has the form

M
fol) =Y Bmolafz + by), (2.45)

m=1

where o(z) = 1/(1 + e~*) is known as the activation function. Here, as
in the projection pursuit model, the directions «,,, and the bias terms b,
have to be determined, and their estimation is the meat of the computation.
Details are give in Chapter 11.

These adaptively chosen basis function methods are also known as dictio-
nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.
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2.9 Model Selection and the Bias—Variance
Tradeoff

All the models described above and many others discussed in later chapters
have a smoothing or complexrity parameter that has to be determined:

e the multiplier of the penalty term;
e the width of the kernel;
e or the number of basis functions.

In the case of the smoothing spline, the parameter A indexes models ranging
from a straight line fit to the interpolating model. Similarly a local degree-
m polynomial model ranges between a degree-m global polynomial when
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. This means that we cannot use residual sum-of-squares
on the training data to determine these parameters as well, since we would
always pick those that gave interpolating fits and hence zero residuals. Such
a model is unlikely to predict future data well at all.

The k-nearest-neighbor regression fit fk(xo) usefully illustrates the com-
peting forces that affect the predictive ability of such approximations. Sup-
pose the data arise from a model Y = f(X) + ¢, with E(¢) = 0 and
Var(e) = o2. For simplicity here we assume that the values of z; in the
sample are fixed in advance (nonrandom). The expected prediction error
at xg, also known as test or generalization error, can be decomposed:

[(Y—fk( ))Q\X—fﬂo]
= 02 + [Bias®(fi(z0)) + Varr(fi(x0))] (2.46)

EPEg (z0)

o2

k
S flw ] = (247
/=1

The subscripts in parentheses (¢) indicate the sequence of nearest neighbors
to xg.

There are three terms in this expression. The first term o2 is the 4r-
reducible error—the variance of the new test target—and is beyond our
control, even if we know the true f(xz).

The second and third terms are under our control, and make up the
mean squared error of fi(x) in estimating f(zo), which is broken down
into a bias component and a variance component. The bias term is the
squared difference between the true mean f(xo) and the expected value of
the estimate—[E7(fi(x0)) — f(20)]2—where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k£ the few closest
neighbors will have values f(x(,)) close to f(zg), so their average should

w\»—

- ot [
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(zp). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias—variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 3>, (y; — 9;)?. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f (zo) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.
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Exercises

Ex. 2.1 Suppose each of K-classes has an associated target tj, which is a
vector of all zeros, except a one in the kth position. Show that classifying to
the largest element of § amounts to choosing the closest target, ming ||ty —
||, if the elements of § sum to one.

Ex. 2.2 Show how to compute the Bayes decision boundary for the simula-
tion example in Figure 2.5.

Ex. 2.3 Derive equation (2.24).

Ex. 2.4 The edge effect problem discussed on page 23 is not peculiar to
uniform sampling from bounded domains. Consider inputs drawn from a
spherical multinormal distribution X ~ N(0,1,). The squared distance
from any sample point to the origin has a X% distribution with mean p.
Consider a prediction point xg drawn from this distribution, and let a =
xo/||z0|| be an associated unit vector. Let z; = a”x; be the projection of
each of the training points on this direction.

Show that the z; are distributed N (0, 1) with expected squared distance
from the origin 1, while the target point has expected squared distance p
from the origin.

Hence for p = 10, a randomly drawn test point is about 3.1 standard
deviations from the origin, while all the training points are on average
one standard deviation along direction a. So most prediction points see
themselves as lying on the edge of the training set.

Ex. 2.5

(a) Derive equation (2.27). The last line makes use of (3.8) through a
conditioning argument.

(b) Derive equation (2.28), making use of the cyclic property of the trace
operator [trace(AB) = trace(BA)], and its linearity (which allows us
to interchange the order of trace and expectation).

Ex. 2.6 Consider a regression problem with inputs z; and outputs y;, and a
parameterized model fp(x) to be fit by least squares. Show that if there are
observations with tied or identical values of x, then the fit can be obtained
from a reduced weighted least squares problem.
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Ex. 2.7 Suppose we have a sample of N pairs z;,y; drawn i.i.d. from the
distribution characterized as follows:

x; ~ h(x), the design density

yi = f(x;) +€i, [ is the regression function

g; ~ (0,0?) (mean zero, variance o?)

We construct an estimator for f linear in the y;,
N

f(xo) = Zfi(xo;/v)yiy
i=1

where the weights ¢;(z¢; X') do not depend on the y;, but do depend on the
entire training sequence of x;, denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are mem-
bers of this class of estimators. Describe explicitly the weights ¢;(z¢; X)
in each of these cases.

(b) Decompose the conditional mean-squared error

Eyjx(f(zo) — f(20))?

into a conditional squared bias and a conditional variance component.
Like X, ) represents the entire training sequence of y;.

(c) Decompose the (unconditional) mean-squared error

Ey x(f(z0) — f(20))
into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in
the above two cases.

Ex. 2.8 Compare the classification performance of linear regression and k—
nearest neighbor classification on the zipcode data. In particular, consider
only the 2’s and 3’s, and £ = 1,3,5,7 and 15. Show both the training and
test error for each choice. The zipcode data are available from the book
website www-stat.stanford.edu/ElemStatLearn.

Ex. 2.9 Consider a linear regression model with p parameters, fit by least

squares to a set of training data (x1,v1),...,(xN,yn) drawn at random

from a population. Let 8 be the least squares estimate. Suppose we have

some test data (Z1,91), ..., (Zar, ¥ar) drawn at random from the same pop-
. . N

ulation as the training data. If Ry, (8) = + > (v — 72;)* and Ry.(B8) =

o Ziw(ﬂz — BT%;)?, prove that

E[Rtr(é)] S E[Rte(B)]a
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where the expectations are over all that is random in each expression. [This
exercise was brought to our attention by Ryan Tibshirani, from a homework
assignment given by Andrew Ng.]
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3

Linear Methods for Regression

3.1 Introduction

A linear regression model assumes that the regression function E(Y|X) is
linear in the inputs Xi,...,X,,. Linear models were largely developed in
the precomputer age of statistics, but even in today’s computer era there
are still good reasons to study and use them. They are simple and often
provide an adequate and interpretable description of how the inputs affect
the output. For prediction purposes they can sometimes outperform fancier
nonlinear models, especially in situations with small numbers of training
cases, low signal-to-noise ratio or sparse data. Finally, linear methods can be
applied to transformations of the inputs and this considerably expands their
scope. These generalizations are sometimes called basis-function methods,
and are discussed in Chapter 5.

In this chapter we describe linear methods for regression, while in the
next chapter we discuss linear methods for classification. On some topics we
go into considerable detail, as it is our firm belief that an understanding
of linear methods is essential for understanding nonlinear ones. In fact,
many nonlinear techniques are direct generalizations of the linear methods
discussed here.
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3.2 Linear Regression Models and Least Squares

As introduced in Chapter 2, we have an input vector X7 = (X1, Xa, ..., X,),
and want to predict a real-valued output Y. The linear regression model
has the form

F(X)=Bo+ > X,8;. (3.1)

Jj=1

The linear model either assumes that the regression function E(Y|X) is
linear, or that the linear model is a reasonable approximation. Here the
B;’s are unknown parameters or coefficients, and the variables X; can come
from different sources:

e quantitative inputs;

e transformations of quantitative inputs, such as log, square-root or
square;

e basis expansions, such as Xo = X?, X3 = X}, leading to a polynomial
representation;

e numeric or “dummy” coding of the levels of qualitative inputs. For
example, if G is a five-level factor input, we might create Xj;, j =
1,...,5, such that X; = I(G = j). Together this group of X; repre-
sents the effect of G by a set of level-dependent constants, since in
Z?:l X;pj, one of the Xs is one, and the others are zero.

e interactions between variables, for example, X3 = X7 - Xo.

No matter the source of the X, the model is linear in the parameters.

Typically we have a set of training data (x1,y1) ... (zn,yn) from which
to estimate the parameters 8. Each z; = (xi17xi2,...,$ip)T is a vector
of feature measurements for the ith case. The most popular estimation
method is least squares, in which we pick the coefficients 5 = (5o, 81, - - - ,Bp)T
to minimize the residual sum of squares

N
RSS(B) = Z(yz — flz))?
Z;l ) )
= Z(yz —Bo— foijﬁj) : (3.2)
i=1 Jj=1

From a statistical point of view, this criterion is reasonable if the training
observations (z;, y;) represent independent random draws from their popu-
lation. Even if the z;’s were not drawn randomly, the criterion is still valid
if the y;’s are conditionally independent given the inputs x;. Figure 3.1
illustrates the geometry of least-squares fitting in the IRP™'-dimensional
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FIGURE 3.1. Linear least squares fitting with X € R?. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)7 Denote by X the N x (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(8) = (v — XB)" (y — X5). (3-3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to 8 we obtain

0055 = -axT(y - X)
ORSS _ o1y (384)
0BOBT ’

Assuming (for the moment) that X has full column rank, and hence XX
is positive definite, we set the first derivative to zero

X" (y -Xp)=0 (3.5)
to obtain the unique solution

B =(XTX)"'xTy. (3.6)
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FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection y represents the vector
of the least squares predictions

The predicted values at an input vector xg are given by f (zg) = (L: zo)TB ;
the fitted values at the training inputs are

y=Xb=XX"X)"'X"y, (3.7)

where §; = f(:nl) The matrix H = X(X7X)~!X” appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRY. We denote the column vectors of X by xq,X1,...,X
with x¢g = 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IR™, also referred to as the column
space of X. We minimize RSS(3) = ||y — XS||? by choosing 3 so that the
residual vector y — y is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate y is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x;). Then X”X is singular
and the least squares coefficients B are not uniquely defined. However,
the fitted values y = X} are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

Dy
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some strategy for removing them. Rank deficiencies can also occur in signal
and image analysis, where the number of inputs p can exceed the number
of training cases N. In this case, the features are typically reduced by
filtering or else the fitting is controlled by regularization (Section 5.2.3 and
Chapter 18).

Up to now we have made minimal assumptions about the true distribu-
tion of the data. In order to pin down the sampling properties of B , We Now
assume that the observations y; are uncorrelated and have constant vari-
ance o2, and that the z; are fixed (non random). The variance—covariance
matrix of the least squares parameter estimates is easily derived from (3.6)
and is given by

Var(8) = (XTX) o2 (3.8)
Typically one estimates the variance o2 by

1 N
~2 2
7 _N—p—lz(yz bi)”

i=1

The N — p — 1 rather than N in the denominator makes 42 an unbiased
estimate of 02: E(6%) = o2.

To draw inferences about the parameters and the model, additional as-
sumptions are needed. We now assume that (3.1) is the correct model for
the mean; that is, the conditional expectation of Y is linear in X1,..., X,,.
We also assume that the deviations of Y around its expectation are additive

and Gaussian. Hence

Y = E(Y|X1,...,X,)+e
P
= ﬁo+ZXj5j+€a (3.9)
j=1

where the error € is a Gaussian random variable with expectation zero and
variance o2, written & ~ N(0,0?).
Under (3.9), it is easy to show that

B~ NG, (XTX)o?). (3.10)

This is a multivariate normal distribution with mean vector and variance—
covariance matrix as shown. Also

(N=p—=1)8> ~0*xX_p_1, (3.11)

a chi-squared distribution with N —p — 1 degrees of freedom. In addition B
and 62 are statistically independent. We use these distributional properties
to form tests of hypothesis and confidence intervals for the parameters 3;.
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FIGURE 3.3. The tail probabilities Pr(|Z| > z) for three distributions, tso, tioo
and standard normal. Shown are the appropriate quantiles for testing significance
at the p = 0.05 and 0.01 levels. The difference between t and the standard normal
becomes negligible for N bigger than about 100.

To test the hypothesis that a particular coefficient 8; = 0, we form the
standardized coefficient or Z-score

B;
&\/17]-’

where v; is the jth diagonal element of (XTX)~!. Under the null hypothesis
that 3; = 0, z; is distributed as ty_,_1 (a ¢ distribution with N —p —1
degrees of freedom), and hence a large (absolute) value of z; will lead to
rejection of this null hypothesis. If ¢ is replaced by a known value o, then
z; would have a standard normal distribution. The difference between the
tail quantiles of a ¢-distribution and a standard normal become negligible
as the sample size increases, and so we typically use the normal quantiles
(see Figure 3.3).

Often we need to test for the significance of groups of coefficients simul-
taneously. For example, to test if a categorical variable with k levels can
be excluded from a model, we need to test whether the coefficients of the
dummy variables used to represent the levels can all be set to zero. Here
we use the F' statistic,

zj = (3.12)

(RSSp — RSS1)/(p1 — po)
RSS1/(N —p1 —1)

F= (3.13)

where RSS; is the residual sum-of-squares for the least squares fit of the big-
ger model with p; +1 parameters, and RSSy the same for the nested smaller
model with py + 1 parameters, having p; — py parameters constrained to be
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zero. The F statistic measures the change in residual sum-of-squares per
additional parameter in the bigger model, and it is normalized by an esti-
mate of o2. Under the Gaussian assumptions, and the null hypothesis that
the smaller model is correct, the F' statistic will have a F},, _p n—p, —1 dis-
tribution. It can be shown (Exercise 3.1) that the z; in (3.12) are equivalent
to the F' statistic for dropping the single coeflicient §; from the model. For
large N, the quantiles of F}, _p, N—p, —1 approach those of x2 _ /(p1—po).

Similarly, we can isolate §; in (3.10) to obtain a 1—2« confidence interval

for f3;:

. 1 R 1
(B — 21" w26, B+ 21702 6). (3.14)
Here 2(1=®) is the 1 — o percentile of the normal distribution:
z(170-025) = 1 96,
Z(1=05)  — 1645, ete.

Hence the standard practice of reporting 3 & 2 - se(3) amounts to an ap-
proximate 95% confidence interval. Even if the Gaussian error assumption
does not hold, this interval will be approximately correct, with its coverage
approaching 1 — 2« as the sample size N — oo.

In a similar fashion we can obtain an approximate confidence set for the
entire parameter vector 3, namely

5 5 ~ 11—«
Cs = {BI(B=BTXTX(B-B) <o ), (3.15)
where X?(lfa) is the 1 — « percentile of the chi-squared distribution on ¢
degrees of freedom: for example, X§(170'05) = 11.1, Xg(lfo‘l) = 9.2. This

confidence set for 8 generates a corresponding confidence set for the true
function f(z) = a7 B, namely {z78|3 € Cg} (Exercise 3.2; see also Fig-
ure 5.4 in Section 5.2.2 for examples of confidence bands for functions).

3.2.1 FExample: Prostate Cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (1lcavol), log prostate
weight (lweight), age, log of the amount of benign prostatic hyperplasia
(1bph), seminal vesicle invasion (svi), log of capsular penetration (lcp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a
binary variable, and gleason is an ordered categorical variable. We see, for
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TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol 1lweight age 1bph svi lcp gleason

lweight 0.300

age 0.286 0.317

lbph  0.063 0.437 0.287

svi  0.593 0.181 0.129 —0.139

lcp  0.692 0.157 0.173 —0.089 0.671
gleason  0.426 0.024 0.366 0.033 0.307 0.476

pgg45  0.483 0.074 0.276 —0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (8.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score

Intercept 2.46 0.09 27.60
lcavol 0.68 0.13 5.37
lweight 0.26 0.10 2.75
age —0.14 0.10 —1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp —0.29 0.15 —1.87
gleason —0.02 0.15 —0.15
pegib 0.27 0.15 1.74

example, that both lcavol and lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostate-specific antigen, 1psa, after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 67 and a test set of size 30. We ap-
plied least squares estimation to the training set, producing the estimates,
standard errors and Z-scores shown in Table 3.2. The Z-scores are defined
in (3.12), and measure the effect of dropping that variable from the model.
A Z-score greater than 2 in absolute value is approximately significant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the tg7_g distribution are £2.002!) The predictor 1cavol shows
the strongest effect, with lweight and svi also strong. Notice that lcp is
not significant, once lcavol is in the model (when used in a model without
lcavol, 1lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F-statistic (3.13). For example, we
consider dropping all the non-significant terms in Table 3.2, namely age,
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lcp, gleason, and pgg45. We get

32.81 — 29.43)/(9 — 5)

_(
F = 13/67 -9

=1.67, (3.16)

which has a p-value of 0.17 (Pr(Fyss > 1.67) = 0.17), and hence is not
significant.

The mean prediction error on the test data is 0.521. In contrast, predic-
tion using the mean training value of 1psa has a test error of 1.057, which
is called the “base error rate.” Hence the linear model reduces the base
error rate by about 50%. We will return to this example later to compare
various selection and shrinkage methods.

3.2.2 The Gauss—Markov Theorem

One of the most famous results in statistics asserts that the least squares
estimates of the parameters § have the smallest variance among all linear
unbiased estimates. We will make this precise here, and also make clear
that the restriction to unbiased estimates is not necessarily a wise one. This
observation will lead us to consider biased estimates such as ridge regression
later in the chapter. We focus on estimation of any linear combination of
the parameters § = a® 3; for example, predictions f(zo) = 2 3 are of this
form. The least squares estimate of a3 is

0=ad"p=a"(X"X)'X"y. (3.17)

Considering X to be fixed, this is a linear function ¢!y of the response
vector y. If we assume that the linear model is correct, a” 3 is unbiased
since

E(a"f) = E("(XTX)"'X"y)
= oI(XTX)"IXTXp
= 47p. (3.18)

The Gauss-Markov theorem states that if we have any other linear estima-
tor § = ¢’y that is unbiased for o’ 3, that is, E(c’y) = a’ 3, then

Var(a® ) < Var(cTy). (3.19)

The proof (Exercise 3.3) uses the triangle inequality. For simplicity we have
stated the result in terms of estimation of a single parameter a” 3, but with
a few more definitions one can state it in terms of the entire parameter
vector 3 (Exercise 3.3).

Consider the mean squared error of an estimator 6 in estimating 6:

MSE(4) = E(0—6)?

= Var() + [E6) — 0]>. (3.20)
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The first term is the variance, while the second term is the squared bias.
The Gauss-Markov theorem implies that the least squares estimator has the
smallest mean squared error of all linear estimators with no bias. However,
there may well exist a biased estimator with smaller mean squared error.
Such an estimator would trade a little bias for a larger reduction in variance.
Biased estimates are commonly used. Any method that shrinks or sets to
zero some of the least squares coefficients may result in a biased estimate.
We discuss many examples, including variable subset selection and ridge
regression, later in this chapter. From a more pragmatic point of view, most
models are distortions of the truth, and hence are biased; picking the right
model amounts to creating the right balance between bias and variance.
We go into these issues in more detail in Chapter 7.

Mean squared error is intimately related to prediction accuracy, as dis-
cussed in Chapter 2. Consider the prediction of the new response at input
Lo,

Yy = f(:l?o) + €o- (321)
Then the expected prediction error of an estimate f (z9) = xgﬁ is
E(Yo — f(w0))® = o +E(«f B~ f(x0))?
= 0%+ MSE(f(20)). (3.22)

Therefore, expected prediction error and mean squared error differ only by
the constant o2, representing the variance of the new observation yq.

3.2.3  Multiple Regression from Simple Univariate Regression

The linear model (3.1) with p > 1 inputs is called the multiple linear
regression model. The least squares estimates (3.6) for this model are best
understood in terms of the estimates for the wnivariate (p = 1) linear
model, as we indicate in this section.

Suppose first that we have a univariate model with no intercept, that is,

Y=Xp+e. (3.23)
The least squares estimate and residuals are
B _ Zf[ Lili
Va2’ (3.24)
i =Yi — CCZB
In convenient vector notation, we let y = (y1,...,yn)", x = (z1,...,2n5)T

and define
N
<X»Y> = leyzv
i=1

= xTy, (3.25)
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the inner product between x and y'. Then we can write

A <X>y>
P= x) (3.26)
r=y-— XB.

As we will see, this simple univariate regression provides the building block
for multiple linear regression. Suppose next that the inputs xi,xs,...,%,
(the columns of the data matrix X) are orthogonal; that is (x;,xz) = 0
for all j # k. Then it is easy to check that the multiple least squares esti-
mates 3; are equal to (x;,y)/(x;,x;)—the univariate estimates. In other
words, when the inputs are orthogonal, they have no effect on each other’s
parameter estimates in the model.

Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational
data. Hence we will have to orthogonalize them in order to carry this idea
further. Suppose next that we have an intercept and a single input x. Then
the least squares coefficient of x has the form

A <X — 1, y>

== Tl 3.27
A (x —z1,x—z1)’ (3.27)
where T = Zl x;/N, and 1 = xq, the vector of N ones. We can view the
estimate (3.27) as the result of two applications of the simple regression
(3.26). The steps are:

1. regress x on 1 to produce the residual z = x — z1;
2. regress y on the residual z to give the coefficient Bi.

In this procedure, “regress b on a” means a simple univariate regression of b
on a with no intercept, producing coefficient ¥ = (a, b)/(a, a) and residual
vector b —ya. We say that b is adjusted for a, or is “orthogonalized” with
respect to a.

Step 1 orthogonalizes x with respect to xo = 1. Step 2 is just a simple
univariate regression, using the orthogonal predictors 1 and z. Figure 3.4
shows this process for two general inputs x; and x5. The orthogonalization
does not change the subspace spanned by x; and x5, it simply produces an
orthogonal basis for representing it.

This recipe generalizes to the case of p inputs, as shown in Algorithm 3.1.
Note that the inputs zg, ..., z;_1 in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regres-
sion coefficients.

IThe inner-product notation is suggestive of generalizations of linear regression to
different metric spaces, as well as to probability spaces.
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FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector Xz is regressed on the vector X1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit y.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize zg = xg = 1.
2. For j=1,2,...)p

Regress x; on zg,%1,...,,2;-1 to produce coeflicients 4, =
(ze,x;)/{(20,20), £ = 0,...,5 — 1 and residual vector z; =

-1 o
Xj = D p—o VkjZk-

3. Regress y on the residual z, to give the estimate Bp.

The result of this algorithm is

Bp — <Zp’y> ] (328)
(zp, zp)

Re-arranging the residual in step 2, we can see that each of the x; is a linear
combination of the z;, k£ < j. Since the z; are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is y. Since z, alone involves x,, (with coefficient 1), we
see that the coefficient (3.28) is indeed the multiple regression coefficient of
y on x,. This key result exposes the effect of correlated inputs in multiple
regression. Note also that by rearranging the x;, any one of them could
be in the last position, and a similar results holds. Hence stated more
generally, we have shown that the jth multiple regression coefficient is the
univariate regression coefficient of y on X;.012...(j—1)(j+1)...,p, the residual
after regressing X5 Ol X0, X1ye ey Xjo1, Xj41y 000y Xpt
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The multiple regression coefficient Bj represents the additional
contribution of x; on'y, after x; has been adjusted for xo,X1,...,X;_1,
Xjtly---9Xp-

If x,, is highly correlated with some of the other x;’s, the residual vector
z,, will be close to zero, and from (3.28) the coefficient Bp will be very
unstable. This will be true for all the variables in the correlated set. In
such situations, we might have all the Z-scores (as in Table 3.2) be small—
any one of the set can be deleted—yet we cannot delete them all. From
(3.28) we also obtain an alternate formula for the variance estimates (3.8),

~ 0'2 0'2

Var(By) = s = (3.29)

In other words, the precision with which we can estimate Bp depends on
the length of the residual vector z,; this represents how much of x, is
unexplained by the other x;’s.

Algorithm 3.1 is known as the Gram-Schmidt procedure for multiple
regression, and is also a useful numerical strategy for computing the esti-
mates. We can obtain from it not just pr but also the entire multiple least
squares fit, as shown in Exercise 3.4.

We can represent step 2 of Algorithm 3.1 in matrix form:

X = 7T, (3.30)

where Z has as columns the z; (in order), and I" is the upper triangular ma-
trix with entries 4;;. Introducing the diagonal matrix D with jth diagonal
entry Dj; = ||z, we get

X

ZD~'DIr
QR, (3.31)

the so-called QR decomposition of X. Here Q is an N x (p+ 1) orthogonal

matrix, Q7Q =1, and Ris a (p+ 1) x (p+ 1) upper triangular matrix.
The QR decomposition represents a convenient orthogonal basis for the

column space of X. It is easy to see, for example, that the least squares

solution is given by

s = R'QTy, (3.32)

y = QQ'y. (3.33)

Equation (3.32) is easy to solve because R is upper triangular
(Exercise 3.4).
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3.2.4  Multiple Outputs
Suppose we have multiple outputs Y7,Ys,...,Yx that we wish to predict

from our inputs Xo, X1, Xs,...,X,. We assume a linear model for each
output
P
Vi = Box+ Y XiBjk+ex (3.34)
j=1
= fi(X)+ e (3.35)

With N training cases we can write the model in matrix notation
Y =XB+E. (3.36)

Here Y is the N x K response matrix, with ik entry y;x, X is the N x (p+1)
input matrix, B is the (p + 1) x K matrix of parameters and E is the
N x K matrix of errors. A straightforward generalization of the univariate
loss function (3.2) is

K N

RSS(B) = > > (v — fulz:)® (3.37)
k=11i=1

= tr[(Y - XB)T(Y - XB)]. (3.38)

The least squares estimates have exactly the same form as before
B=(X"X)"'x"Y. (3.39)

Hence the coefficients for the kth outcome are just the least squares es-
timates in the regression of y; on x¢,X1,...,X,. Multiple outputs do not
affect one another’s least squares estimates.

If the errors € = (e1,...,ex) in (3.34) are correlated, then it might seem
appropriate to modify (3.37) in favor of a multivariate version. Specifically,
suppose Cov(g) = 3, then the multivariate weighted criterion

N

RSS(B; X) = z:(yz — Flae)TZ Yy — f(20)) (3.40)

i=1

arises naturally from multivariate Gaussian theory. Here f(x) is the vector
function (f1(x),..., fr(z))T, and y; the vector of K responses for obser-
vation i. However, it can be shown that again the solution is given by
(3.39); K separate regressions that ignore the correlations (Exercise 3.11).
If the 3; vary among observations, then this is no longer the case, and the
solution for B no longer decouples.

In Section 3.7 we pursue the multiple outcome problem, and consider
situations where it does pay to combine the regressions.
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3.3 Subset Selection

There are two reasons why we are often not satisfied with the least squares
estimates (3.6).

e The first is prediction accuracy: the least squares estimates often have
low bias but large variance. Prediction accuracy can sometimes be
improved by shrinking or setting some coefficients to zero. By doing
so we sacrifice a little bit of bias to reduce the variance of the predicted
values, and hence may improve the overall prediction accuracy.

e The second reason is interpretation. With a large number of predic-
tors, we often would like to determine a smaller subset that exhibit
the strongest effects. In order to get the “big picture,” we are willing
to sacrifice some of the small details.

In this section we describe a number of approaches to variable subset selec-
tion with linear regression. In later sections we discuss shrinkage and hybrid
approaches for controlling variance, as well as other dimension-reduction
strategies. These all fall under the general heading model selection. Model
selection is not restricted to linear models; Chapter 7 covers this topic in
some detail.

With subset selection we retain only a subset of the variables, and elim-
inate the rest from the model. Least squares regression is used to estimate
the coefficients of the inputs that are retained. There are a number of dif-
ferent strategies for choosing the subset.

3.3.1 Best-Subset Selection

Best subset regression finds for each k& € {0,1,2,...,p} the subset of size k
that gives smallest residual sum of squares (3.2). An efficient algorithm—
the leaps and bounds procedure (Furnival and Wilson, 1974)—makes this
feasible for p as large as 30 or 40. Figure 3.5 shows all the subset models
for the prostate cancer example. The lower boundary represents the models
that are eligible for selection by the best-subsets approach. Note that the
best subset of size 2, for example, need not include the variable that was
in the best subset of size 1 (for this example all the subsets are nested).
The best-subset curve (red lower boundary in Figure 3.5) is necessarily
decreasing, so cannot be used to select the subset size k. The question of
how to choose k involves the tradeoff between bias and variance, along with
the more subjective desire for parsimony. There are a number of criteria
that one may use; typically we choose the smallest model that minimizes
an estimate of the expected prediction error.

Many of the other approaches that we discuss in this chapter are similar,
in that they use the training data to produce a sequence of models varying
in complexity and indexed by a single parameter. In the next section we use
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2  Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:
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o Computational; for large p we cannot compute the best subset se-
quence, but we can always compute the forward stepwise sequence
(even when p > N).

e Statistical; a price is paid in variance for selecting the best subset
of each size; forward stepwise is a more constrained search, and will
have lower variance, but perhaps more bias.
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FIGURE 3.6. Comparison of four subset-selection techniques on a simulated lin-
ear regression problem Y = XT3 +¢. There are N = 300 observations on p = 31
standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of
the variables, the coefficients are drawn at random from a N(0,0.4) distribution;
the rest are zero. The noise € ~ N(0,6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown is the mean-squared error
of the estimated coefficient B(k) at each step from the true (.

Backward-stepwise selection starts with the full model, and sequentially
deletes the predictor that has the least impact on the fit. The candidate for
dropping is the variable with the smallest Z-score (Exercise 3.10). Backward
selection can only be used when N > p, while forward stepwise can always
be used.

Figure 3.6 shows the results of a small simulation study to compare
best-subset regression with the simpler alternatives forward and backward
selection. Their performance is very similar, as is often the case. Included in
the figure is forward stagewise regression (next section), which takes longer
to reach minimum error.



60 3. Linear Methods for Regression

On the prostate cancer example, best-subset, forward and backward se-
lection all gave exactly the same sequence of terms.

Some software packages implement hybrid stepwise-selection strategies
that consider both forward and backward moves at each step, and select
the “best” of the two. For example in the R package the step function uses
the AIC criterion for weighing the choices, which takes proper account of
the number of parameters fit; at each step an add or drop will be performed
that minimizes the AIC score.

Other more traditional packages base the selection on F-statistics, adding
“significant” terms, and dropping “non-significant” terms. These are out
of fashion, since they do not take proper account of the multiple testing
issues. It is also tempting after a model search to print out a summary of
the chosen model, such as in Table 3.2; however, the standard errors are
not valid, since they do not account for the search process. The bootstrap
(Section 8.2) can be useful in such settings.

Finally, we note that often variables come in groups (such as the dummy
variables that code a multi-level categorical predictor). Smart stepwise pro-
cedures (such as step in R) will add or drop whole groups at a time, taking
proper account of their degrees-of-freedom.

3.3.8  Forward-Stagewise Regression

Forward-stagewise regression (F'S) is even more constrained than forward-
stepwise regression. It starts like forward-stepwise regression, with an in-
tercept equal to g, and centered predictors with coefficients initially all 0.
At each step the algorithm identifies the variable most correlated with the
current residual. It then computes the simple linear regression coefficient
of the residual on this chosen variable, and then adds it to the current co-
efficient for that variable. This is continued till none of the variables have
correlation with the residuals—i.e. the least-squares fit when N > p.

Unlike forward-stepwise regression, none of the other variables are ad-
justed when a term is added to the model. As a consequence, forward
stagewise can take many more than p steps to reach the least squares fit,
and historically has been dismissed as being inefficient. It turns out that
this “slow fitting” can pay dividends in high-dimensional problems. We
see in Section 3.8.1 that both forward stagewise and a variant which is
slowed down even further are quite competitive, especially in very high-
dimensional problems.

Forward-stagewise regression is included in Figure 3.6. In this example it
takes over 1000 steps to get all the correlations below 10~*. For subset size
k, we plotted the error for the last step for which there where k nonzero
coefficients. Although it catches up with the best fit, it takes longer to
do so.
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3.3.4  Prostate Cancer Data Ezample (Continued)

Table 3.3 shows the coefficients from a number of different selection and
shrinkage methods. They are best-subset selection using an all-subsets search,
ridge regression, the lasso, principal components regression and partial least
squares. Each method has a complexity parameter, and this was chosen to
minimize an estimate of prediction error based on tenfold cross-validation;
full details are given in Section 7.10. Briefly, cross-validation works by divid-
ing the training data randomly into ten equal parts. The learning method
is fit—for a range of values of the complexity parameter—to nine-tenths of
the data, and the prediction error is computed on the remaining one-tenth.
This is done in turn for each one-tenth of the data, and the ten prediction
error estimates are averaged. From this we obtain an estimated prediction
error curve as a function of the complexity parameter.

Note that we have already divided these data into a training set of size
67 and a test set of size 30. Cross-validation is applied to the training set,
since selecting the shrinkage parameter is part of the training process. The
test set is there to judge the performance of the selected model.

The estimated prediction error curves are shown in Figure 3.7. Many of
the curves are very flat over large ranges near their minimum. Included
are estimated standard error bands for each estimated error rate, based on
the ten error estimates computed by cross-validation. We have used the
“one-standard-error” rule—we pick the most parsimonious model within
one standard error of the minimum (Section 7.10, page 244). Such a rule
acknowledges the fact that the tradeoff curve is estimated with error, and
hence takes a conservative approach.

Best-subset selection chose to use the two predictors lcvol and lweight.
The last two lines of the table give the average prediction error (and its
estimated standard error) over the test set.

3.4 Shrinkage Methods

By retaining a subset of the predictors and discarding the rest, subset selec-
tion produces a model that is interpretable and has possibly lower predic-
tion error than the full model. However, because it is a discrete process—
variables are either retained or discarded—it often exhibits high variance,
and so doesn’t reduce the prediction error of the full model. Shrinkage
methods are more continuous, and don’t suffer as much from high
variability.

3.4.1  Ridge Regression

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The ridge coefficients minimize a penalized residual sum of
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FIGURE 3.7. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complexity parameter for that method. The horizontal axis
has been chosen so that the model complexity increases as we move from left to
right. The estimates of prediction error and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen, indicated by the purple
vertical broken lines.
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TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS

Intercept 2.465 2.477 2.452  2.468 2.497 2.452

lcavol 0.680 0.740 0.420 0.533 0.543 0.419

lweight 0.263 0.316 0.238  0.169 0.289 0.344

age —0.141 —0.046 —0.152 —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079

gleason —0.021 0.040 0.232 0.011

pggds  0.267 0.133 —0.056  0.084

Test Error 0.521 0.492 0.492  0.479 0.449 0.528

Std Error 0.179 0.143 0.165 0.164 0.105 0.152

squares,
- N P ) P
Bndge — arg;nin{Z(yi — Po — Z a:ijﬁj) + A Z ,3]2} (341)
i=1 j=1 j=1

Here A > 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of A, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

N p 2
Bndge = arg;ninZ(yi — Bo — injﬁj) ,

i =t (3.42)
subject to ZBJQ <t,

j=1

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters A in (3.41) and ¢ in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin. By imposing a
size constraint on the coefficients, as in (3.42), this problem is alleviated.
The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41). In addition,
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notice that the intercept By has been left out of the penalty term. Penal-
ization of the intercept would make the procedure depend on the origin
chosen for Y; that is, adding a constant ¢ to each of the targets y; would
not simply result in a shift of the predictions by the same amount c. It
can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each z;; gets
replaced by z;; — z;. We estimate 5y by y = % Eiv y;. The remaining co-
efficients get estimated by a ridge regression without intercept, using the
centered z;;. Henceforth we assume that this centering has been done, so
that the input matrix X has p (rather than p + 1) columuns.
Writing the criterion in (3.41) in matrix form,

RSS(A) = (v = XB)" (y — XB) + A8" 5, (3.43)
the ridge regression solutions are easily seen to be
pridee — (XTX 4+ A1) "1 X"y, (3.44)

where I is the p X p identity matrix. Notice that with the choice of quadratic
penalty A73, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of X7 X before
inversion. This makes the problem nonsingular, even if XX is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.8 shows the ridge coeflicient estimates for the prostate can-
cer example, plotted as functions of df()), the effective degrees of freedom
implied by the penalty A (defined in (3.50) on page 68). In the case of or-
thonormal inputs, the ridge estimates are just a scaled version of the least
squares estimates, that is, 448° = B/(l +A).

Ridge regression can also be derived as the mean or mode of a poste-
rior distribution, with a suitably chosen prior distribution. In detail, sup-
pose y; ~ N(Bo + af 8,0?), and the parameters 3; are each distributed as
N(0,72), independently of one another. Then the (negative) log-posterior
density of 3, with 72 and o2 assumed known, is equal to the expression
in curly braces in (3.41), with A\ = 02/72 (Exercise 3.6). Thus the ridge
estimate is the mode of the posterior distribution; since the distribution is
Gaussian, it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
composition is extremely useful in the analysis of many statistical methods.
The SVD of the N x p matrix X has the form

X = UDVT. (3.45)
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter X is varied. Coefficients are plotted versus df(X), the effective
degrees of freedom. A wertical line is drawn at df = 5.0, the value chosen by
cross-validation.
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Here U and V are N x p and p X p orthogonal matrices, with the columns
of U spanning the column space of X, and the columns of V spanning the
row space. D is a p X p diagonal matrix, with diagonal entries dy > do >
-+ > dp > 0 called the singular values of X. If one or more values d; = 0,
X is singular.

Using the singular value decomposition we can write the least squares
fitted vector as

X = X(XTX)'XTy
= UUTy, (3.46)

after some simplification. Note that UTy are the coordinates of y with
respect to the orthonormal basis U. Note also the similarity with (3.33);
Q and U are generally different orthogonal bases for the column space of
X (Exercise 3.8).

Now the ridge solutions are

Xpidee = X(XTX+ M) Xy
= UD(D?+ ) 'DU"y

p d2 -
_ J
= LWy (3.47)
=1 J

where the u; are the columns of U. Note that since A > 0, we have d?/(d? +
A) < 1. Like linear regression, ridge regression computes the coordinates of
y with respect to the orthonormal basis U. It then shrinks these coordinates
by the factors d? / (dj2 + A). This means that a greater amount of shrinkage
is applied to the coordinates of basis vectors with smaller d?.

What does a small value of d? mean? The SVD of the centered matrix
X is another way of expressing the principal components of the variables
in X. The sample covariance matrix is given by S = X7X/N, and from
(3.45) we have

XTX = vD?V7T, (3.48)

which is the eigen decomposition of XTX (and of S, up to a factor N).
The eigenvectors v; (columns of V) are also called the principal compo-
nents (or Karhunen—Loeve) directions of X. The first principal component
direction vy has the property that z; = Xv; has the largest sample vari-
ance amongst all normalized linear combinations of the columns of X. This

sample variance is easily seen to be

2
_ a7
TN

Var(z;) = Var(Xuv;) (3.49)

and in fact z; = Xv; = uid;. The derived variable z; is called the first
principal component of X, and hence u; is the normalized first principal
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FIGURE 3.9. Principal components of some input data points. The largest prin-
cipal component is the direction that mazimizes the variance of the projected data,
and the smallest principal component minimizes that variance. Ridge regression
projects y onto these components, and then shrinks the coefficients of the low—
variance components more than the high-variance components.

component. Subsequent principal components z; have maximum variance
d? /N, subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues d; correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.

Figure 3.9 illustrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y-axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, since predictors are
often chosen for study because they vary with the response variable, but
need not hold in general.
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In Figure 3.7 we have plotted the estimated prediction error versus the
quantity

df(\) = tr[X(XTX 4+ AI1)~1X7],
= tr(H)\)

d2
— J
= 2 iy (3.50)

j=1 "7

This monotone decreasing function of \ is the effective degrees of freedom
of the ridge regression fit. Usually in a linear-regression fit with p variables,
the degrees-of-freedom of the fit is p, the number of free parameters. The
idea is that although all p coefficients in a ridge fit will be non-zero, they
are fit in a restricted fashion controlled by A. Note that df(\) = p when
A = 0 (no regularization) and df(\) — 0 as A — oo. Of course there
is always an additional one degree of freedom for the intercept, which was
removed apriori. This definition is motivated in more detail in Section 3.4.4
and Sections 7.4-7.6. In Figure 3.7 the minimum occurs at df(\) = 5.0.
Table 3.3 shows that ridge regression reduces the test error of the full least
squares estimates by a small amount.

3.4.2 The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

N p 2
ﬂlasso = arg;nin Z(yz — ﬂo — Z fijﬁj)
i—1 J=1

P
subject to Z |6 < t. (3.51)
j=1

Just as in ridge regression, we can re-parametrize the constant 3y by stan-
dardizing the predictors; the solution for BO is g, and thereafter we fit a
model without an intercept (Exercise 3.5). In the signal processing litera-
ture, the lasso is also known as basis pursuit (Chen et al., 1998).

We can also write the lasso problem in the equivalent Lagrangian form

N

P P
Blasso — argénin{; Z(yz —Bo— injﬁj)z + )\Z |5J} (3.52)
j=1 J=1

i=1

Notice the similarity to the ridge regression problem (3.42) or (3.41): the
Ly ridge penalty Y-} 87 is replaced by the Ly lasso penalty Y 7 |3;|. This
latter constraint makes the solutions nonlinear in the y;, and there is no
closed form expression as in ridge regression. Computing the lasso solution
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is a quadratic programming problem, although we see in Section 3.4.4 that
efficient algorithms are available for computing the entire path of solutions
as A is varied, with the same computational cost as for ridge regression.
Because of the nature of the constraint, making ¢ sufficiently small will
cause some of the coefficients to be exactly zero. Thus the lasso does a kind
of continuous subset selection. If ¢ is chosen larger than tg = > 7 | BJ| (where
Bj = B}S, the least squares estimates), then the lasso estimates are the Bj’s.
On the other hand, for ¢ = ty/2 say, then the least squares coefficients are
shrunk by about 50% on average. However, the nature of the shrinkage
is not obvious, and we investigate it further in Section 3.4.4 below. Like
the subset size in variable subset selection, or the penalty parameter in
ridge regression, ¢t should be adaptively chosen to minimize an estimate of
expected prediction error.

In Figure 3.7, for ease of interpretation, we have plotted the lasso pre-
diction error estimates versus the standardized parameter s = ¢/ 7 |3].
A value § ~ 0.36 was chosen by 10-fold cross-validation; this caused four
coefficients to be set to zero (fifth column of Table 3.3). The resulting
model has the second lowest test error, slightly lower than the full least
squares model, but the standard errors of the test error estimates (last line
of Table 3.3) are fairly large.

Figure 3.10 shows the lasso coefficients as the standardized tuning pa-
rameter s = t/ 3 7|3;] is varied. At s = 1.0 these are the least squares
estimates; they decrease to 0 as s — 0. This decrease is not always strictly
monotonic, although it is in this example. A vertical line is drawn at
s = 0.36, the value chosen by cross-validation.

3.4.8 Discussion: Subset Selection, Ridge Regression and the
Lasso

In this section we discuss and compare the three approaches discussed so far
for restricting the linear regression model: subset selection, ridge regression
and the lasso.

In the case of an orthonormal input matrix X the three procedures have
explicit solutions. Each method applies a simple transformation to the least
squares estimate [3;, as detailed in Table 3.4.

Ridge regression does a proportional shrinkage. Lasso translates each
coefficient by a constant factor A, truncating at zero. This is called “soft
thresholding,” and is used in the context of wavelet-based smoothing in Sec-
tion 5.9. Best-subset selection drops all variables with coefficients smaller
than the Mth largest; this is a form of “hard-thresholding.”

Back to the nonorthogonal case; some pictures help understand their re-
lationship. Figure 3.11 depicts the lasso (left) and ridge regression (right)
when there are only two parameters. The residual sum of squares has ellip-
tical contours, centered at the full least squares estimate. The constraint
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ .7 |3;|. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do mot. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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TABLE 3.4. Estimators of B; in the case of orthonormal columns of X. M and A
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (£1), and x4 denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45° line in gray shows the unrestricted estimate

for reference.

Estimator

Formula

Best subset (size M) ;- I(|5;] > |/§(M)|)

Ridge Bj/(l +A)
Lasso sign(Bj)(|ﬁj| - A+
Best Subset Ridge Lasso
. 2
B | a ,"’/
0.0 7100 -7 710.0)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2] < t and B} + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

71
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region for ridge regression is the disk 37 + 35 < t, while that for lasso is
the diamond |81] + |B2| < ¢. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
B; equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

N P p
B = argénin{z:(yi = Bo — Zﬂsijﬁj)Q + )\Z |ﬁj|q} (3.53)
=1 j=1

i=1

for ¢ > 0. The contours of constant value of 3. [3;|? are shown in Fig-
ure 3.12; for the case of two inputs.

Thinking of |3;]? as the log-prior density for 5;, these are also the equi-
contours of the prior distribution of the parameters. The value ¢ = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; ¢ = 1 corresponds to the lasso, while ¢ = 2 to ridge
regression. Notice that for ¢ < 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the ¢ = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/27)exp(—|3|/7) and 7 = 1/A.
The case ¢ = 1 (lasso) is the smallest ¢ such that the constraint region
is convex; non-convex constraint regions make the optimization problem
more difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.53), we might try using other values
of ¢ besides 0, 1, or 2. Although one might consider estimating ¢ from
the data, our experience is that it is not worth the effort for the extra
variance incurred. Values of ¢ € (1,2) suggest a compromise between the
lasso and ridge regression. Although this is the case, with ¢ > 1, [3;]? is
differentiable at 0, and so does not share the ability of lasso (¢ = 1) for

2 q

1 q=0.5 q=0.1

qg=4 q
|
\

FIGURE 3.12. Contours of constant value of 3 |B;|* for given values of q.
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FIGURE 3.13. Contours of constant value of Zj |B;]7 for ¢ = 1.2 (left plot),
and the elastic-net penalty 3~ (aBF+(1—a)|B;|) for a = 0.2 (right plot). Although
visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penalty does not.

setting coeflicients exactly to zero. Partly for this reason as well as for
computational tractability, Zou and Hastie (2005) introduced the elastic-
net penalty

A

J

p
(af; + (1 - a)l5)), (3.54)
=1
a different compromise between ridge and lasso. Figure 3.13 compares the
Lq penalty with ¢ = 1.2 and the elastic-net penalty with a = 0.2; it is
hard to detect the difference by eye. The elastic-net selects variables like
the lasso, and shrinks together the coefficients of correlated predictors like
ridge. It also has considerable computational advantages over the L, penal-
ties. We discuss the elastic-net further in Section 18.4.

3.4.4 Least Angle Regression

Least angle regression (LAR) is a relative newcomer (Efron et al., 2004),
and can be viewed as a kind of “democratic” version of forward stepwise
regression (Section 3.3.2). As we will see, LAR is intimately connected
with the lasso, and in fact provides an extremely efficient algorithm for
computing the entire lasso path as in Figure 3.10.

Forward stepwise regression builds a model sequentially, adding one vari-
able at a time. At each step, it identifies the best variable to include in the
active set, and then updates the least squares fit to include all the active
variables.

Least angle regression uses a similar strategy, but only enters “as much”
of a predictor as it deserves. At the first step it identifies the variable
most correlated with the response. Rather than fit this variable completely,
LAR moves the coefficient of this variable continuously toward its least-
squares value (causing its correlation with the evolving residual to decrease
in absolute value). As soon as another variable “catches up” in terms of
correlation with the residual, the process is paused. The second variable
then joins the active set, and their coeflicients are moved together in a way
that keeps their correlations tied and decreasing. This process is continued
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until all the variables are in the model, and ends at the full least-squares
fit. Algorithm 3.2 provides the details. The termination condition in step 5
requires some explanation. If p > N — 1, the LAR algorithm reaches a zero
residual solution after N — 1 steps (the —1 is because we have centered the
data).

Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit norm. Start
with the residual r =y —y, f1,582,..., 8, = 0.

2. Find the predictor x; most correlated with r.

3. Move (3, from 0 towards its least-squares coefficient (x;, r), until some
other competitor x; has as much correlation with the current residual
as does x;.

4. Move ; and B in the direction defined by their joint least squares
coefficient of the current residual on (x;,x}), until some other com-
petitor x; has as much correlation with the current residual.

5. Continue in this way until all p predictors have been entered. After
min(N — 1, p) steps, we arrive at the full least-squares solution.

Suppose Ay, is the active set of variables at the beginning of the kth
step, and let 54, be the coeflicient vector for these variables at this step;
there will be k — 1 nonzero values, and the one just entered will be zero. If
ry =y — X4, 54, is the current residual, then the direction for this step is

o = (X%, Xoa,) ' XY, 1. (3.55)

The coefficient profile then evolves as S84, (a) = S4, + « - Ji. Exercise 3.23
verifies that the directions chosen in this fashion do what is claimed: keep
the correlations tied and decreasing. If the fit vector at the beginning of
this step is f'k, then it evolves as fk(a) = f'k + «a - ug, where up = X 4, 0
is the new fit direction. The name “least angle” arises from a geometrical
interpretation of this process; ui makes the smallest (and equal) angle
with each of the predictors in Ay (Exercise 3.24). Figure 3.14 shows the
absolute correlations decreasing and joining ranks with each step of the
LAR algorithm, using simulated data.

By construction the coefficients in LAR change in a piecewise linear fash-
ion. Figure 3.15 [left panel] shows the LAR coefficient profile evolving as a
function of their L; arc length 2. Note that we do not need to take small

2The L; arc-length of a differentiable curve (s) for s € [0, S] is given by TV(j, S) =
fOS [16(s)||1ds, where 3(s) = AB(s)/ds. For the piecewise-linear LAR coefficient profile,
this amounts to summing the L norms of the changes in coefficients from step to step.
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with siz predictors. The labels at the
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FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the Ly arc length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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steps and recheck the correlations in step 3; using knowledge of the covari-
ance of the predictors and the piecewise linearity of the algorithm, we can
work out the exact step length at the beginning of each step (Exercise 3.25).

The right panel of Figure 3.15 shows the lasso coeflicient profiles on the
same data. They are almost identical to those in the left panel, and differ
for the first time when the blue coefficient passes back through zero. For the
prostate data, the LAR coefficient profile turns out to be identical to the
lasso profile in Figure 3.10, which never crosses zero. These observations
lead to a simple modification of the LAR algorithm that gives the entire
lasso path, which is also piecewise-linear.

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

The LAR(lasso) algorithm is extremely efficient, requiring the same order
of computation as that of a single least squares fit using the p predictors.
Least angle regression always takes p steps to get to the full least squares
estimates. The lasso path can have more than p steps, although the two
are often quite similar. Algorithm 3.2 with the lasso modification 3.2a is
an efficient way of computing the solution to any lasso problem, especially
when p > N. Osborne et al. (2000a) also discovered a piecewise-linear path
for computing the lasso, which they called a homotopy algorithm.

We now give a heuristic argument for why these procedures are so similar.
Although the LAR algorithm is stated in terms of correlations, if the input
features are standardized, it is equivalent and easier to work with inner-
products. Suppose A is the active set of variables at some stage in the
algorithm, tied in their absolute inner-product with the current residuals
y — X 3. We can express this as

x[(y —XB)=7-s;, ¥VjeA (3.56)

where s; € {—1,1} indicates the sign of the inner-product, and v is the
common value. Also |x} (y — Xj)| < v Vk ¢ A. Now consider the lasso
criterion (3.52), which we write in vector form

R(B) = 5lly — XBII3 + Al|Bl]1- (3.57)

Let B be the active set of variables in the solution for a given value of .
For these variables R(3) is differentiable, and the stationarity conditions
give

x; (y — XB) = X -sign(B;), Vj € B (3.58)
Comparing (3.58) with (3.56), we see that they are identical only if the
sign of ; matches the sign of the inner product. That is why the LAR
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algorithm and lasso start to differ when an active coefficient passes through
zero; condition (3.58) is violated for that variable, and it is kicked out of the
active set B. Exercise 3.23 shows that these equations imply a piecewise-
linear coefficient profile as A\ decreases. The stationarity conditions for the
non-active variables require that

X} (y — XB)| < A, Vk & B, (3.59)

which again agrees with the LAR algorithm.

Figure 3.16 compares LAR and lasso to forward stepwise and stagewise
regression. The setup is the same as in Figure 3.6 on page 59, except here
N = 100 here rather than 300, so the problem is more difficult. We see
that the more aggressive forward stepwise starts to overfit quite early (well
before the 10 true variables can enter the model), and ultimately performs
worse than the slower forward stagewise regression. The behavior of LAR
and lasso is similar to that of forward stagewise regression. Incremental
forward stagewise is similar to LAR and lasso, and is described in Sec-
tion 3.8.1.

Degrees-of-Freedom Formula for LAR and Lasso

Suppose that we fit a linear model via the least angle regression procedure,
stopping at some number of steps k < p, or equivalently using a lasso bound
t that produces a constrained version of the full least squares fit. How many
parameters, or “degrees of freedom” have we used?

Consider first a linear regression using a subset of k features. If this subset
is prespecified in advance without reference to the training data, then the
degrees of freedom used in the fitted model is defined to be k. Indeed, in
classical statistics, the number of linearly independent parameters is what
is meant by “degrees of freedom.” Alternatively, suppose that we carry out
a best subset selection to determine the “optimal” set of k predictors. Then
the resulting model has k parameters, but in some sense we have used up
more than k£ degrees of freedom.

We need a more general definition for the effective degrees of freedom of
an adaptively fitted model. We define the degrees of freedom of the fitted

vector y = (gbg% s 7:gN) as
1 N
df(y) = po) Z Cov(9i, yi)- (3.60)
i=1

Here Cov(y;,y;) refers to the sampling covariance between the predicted
value 7; and its corresponding outcome value ;. This makes intuitive sense:
the harder that we fit to the data, the larger this covariance and hence
df(y). Expression (3.60) is a useful notion of degrees of freedom, one that
can be applied to any model prediction y. This includes models that are
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FIGURE 3.16. Comparison of LAR and lasso with forward stepwise, forward
stagewise (FS) and incremental forward stagewise (FSo) regression. The setup
is the same as in Figure 3.6, except N = 100 here rather than 300. Here the
slower FS regression ultimately outperforms forward stepwise. LAR and lasso
show similar behavior to F'S and FSo. Since the procedures take different numbers
of steps (across simulation replicates and methods), we plot the MSE as a function
of the fraction of total L1 arc-length toward the least-squares fit.

adaptively fitted to the training data. This definition is motivated and
discussed further in Sections 7.4-7.6.

Now for a linear regression with k fixed predictors, it is easy to show
that df(y) = k. Likewise for ridge regression, this definition leads to the
closed-form expression (3.50) on page 68: df(y) = tr(Sy). In both these
cases, (3.60) is simple to evaluate because the fit y = H,y is linear in y.
If we think about definition (3.60) in the context of a best subset selection
of size k, it seems clear that df(y) will be larger than &, and this can be
verified by estimating Cov(#;,y;)/o? directly by simulation. However there
is no closed form method for estimating df(y) for best subset selection.

For LAR and lasso, something magical happens. These techniques are
adaptive in a smoother way than best subset selection, and hence estimation
of degrees of freedom is more tractable. Specifically it can be shown that
after the kth step of the LAR procedure, the effective degrees of freedom of
the fit vector is exactly k. Now for the lasso, the (modified) LAR procedure
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often takes more than p steps, since predictors can drop out. Hence the
definition is a little different; for the lasso, at any stage df(y) approximately
equals the number of predictors in the model. While this approximation
works reasonably well anywhere in the lasso path, for each k it works best
at the last model in the sequence that contains k predictors. A detailed
study of the degrees of freedom for the lasso may be found in Zou et al.
(2007).

3.5 Methods Using Derived Input Directions

In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
Zm, m=1,..., M of the original inputs X;, and the Z,, are then used in
place of the X as inputs in the regression. The methods differ in how the
linear combinations are constructed.

3.5.1 Principal Components Regression

In this approach the linear combinations Z,, used are the principal com-
ponents as defined in Section 3.4.1 above.

Principal component regression forms the derived input columns z,, =
Xy, and then regresses y on z, Zo, . . .,z for some M < p. Since the z,,
are orthogonal, this regression is just a sum of univariate regressions:

M
In =01+ Y Oz, (3.61)
m=1

where O, = (Zm,y)/(Zm, Zm). Since the z,, are each linear combinations
of the original x;, we can express the solution (3.61) in terms of coefficients
of the x; (Exercise 3.13):

N M A~
chr(M) = Z emvmn (362)

m=1

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we first standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
Z = UD span the column space of X. For M < p we get a reduced regres-
sion. We see that principal components regression is very similar to ridge
regression: both operate via the principal components of the input ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.17), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p — M smallest
eigenvalue components. Figure 3.17 illustrates this.
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FIGURE 3.17. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d?/(d? + A) as in (3.47). Principal
component regression truncates them. Shown are the shrinkage and truncation
patterns corresponding to Figure 3.7, as a function of the principal component
indez.

In Figure 3.7 we see that cross-validation suggests seven terms; the re-
sulting model has the lowest test error in Table 3.3.

3.5.2  Partial Least Squares

This technique also constructs a set of linear combinations of the inputs
for regression, but unlike principal components regression it uses y (in ad-
dition to X) for this construction. Like principal component regression,
partial least squares (PLS) is not scale invariant, so we assume that each
x; is standardized to have mean 0 and variance 1. PLS begins by com-
puting ¢1; = (x;,y) for each j. From this we construct the derived input
7| = Zj (1%, which is the first partial least squares direction. Hence
in the construction of each z,,, the inputs are weighted by the strength
of their univariate effect on y®. The outcome y is regressed on z; giving
coefficient 6, and then we orthogonalize x1, ... ,x, with respect to z;. We
continue this process, until M < p directions have been obtained. In this
manner, partial least squares produces a sequence of derived, orthogonal
inputs or directions zy,zo,...,zy. As with principal-component regres-
sion, if we were to construct all M = p directions, we would get back a
solution equivalent to the usual least squares estimates; using M < p di-
rections produces a reduced regression. The procedure is described fully in
Algorithm 3.3.

3Since the x; are standardized, the first directions ¢1; are the univariate regression
coefficients (up to an irrelevant constant); this is not the case for subsequent directions.
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Algorithm 3.3 Partial Least Squares.

1. Standardize each x; to have mean zero and variance one. Set y(*) =

41, and XEO) =xj,j=1,...,p.

2. Form=1,2,....,p

~ —1
m Z?:l (ij xgm )

m <Z7n7 y>/<z7n7 Z’m>

= y(mil) + émzm-

(m—-1)
J

(2, ") (2 20 2o, 5 = 1,2, .

, where ¢p,; = (x;mfl)

(a
(b
(¢
(d

N

) Y-

) 0

)

) (m) _ _(m-1) _

with respect to z,,: x; X;

yim
Orthogonahze each x ]

3. Output the sequence of fitted vectors {y(™}}. Since the {z,}7" are
linear in the original x;, so is y(m) = X3P (m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

In the prostate cancer example, cross-validation chose M = 2 PLS direc-
tions in Figure 3.7. This produced the model given in the rightmost column
of Table 3.3.

What optimization problem is partial least squares solving? Since it uses
the response y to construct its directions, its solution path is a nonlinear
function of y. It can be shown (Exercise 3.15) that partial least squares
seeks directions that have high variance and have high correlation with the
response, in contrast to principal components regression which keys only
on high variance (Stone and Brooks, 1990; Frank and Friedman, 1993). In
particular, the mth principal component direction v, solves:

max, Var(Xa) (3.63)
subject to ||a]| =1, aTSv, =0, £=1,...,m — 1,

where S is the sample covariance matrix of the x;. The conditions aTSv, =
0 ensures that z,, = Xa is uncorrelated with all the previous linear com-
binations zy = Xwvy. The mth PLS direction ¢, solves:

max,, Corr®(y, Xa)Var(Xa) (3.64)
subject to ||a]| =1, 'S¢y =0, £ =1,...,m — 1.

Further analysis reveals that the variance aspect tends to dominate, and
so partial least squares behaves much like ridge regression and principal
components regression. We discuss this further in the next section.

If the input matrix X is orthogonal, then partial least squares finds the
least squares estimates after m = 1 steps. Subsequent steps have no effect



82 3. Linear Methods for Regression

since the ¢,,; are zero for m > 1 (Exercise 3.14). It can also be shown that
the sequence of PLS coefficients for m = 1,2, ..., p represents the conjugate
gradient sequence for computing the least squares solutions (Exercise 3.18).

3.6 Discussion: A Comparison of the Selection and
Shrinkage Methods

There are some simple settings where we can understand better the rela-
tionship between the different methods described above. Consider an exam-
ple with two correlated inputs X; and X5, with correlation p. We assume
that the true regression coefficients are f; = 4 and f = 2. Figure 3.18
shows the coefficient profiles for the different methods, as their tuning pa-
rameters are varied. The top panel has p = 0.5, the bottom panel p = —0.5.
The tuning parameters for ridge and lasso vary over a continuous range,
while best subset, PLS and PCR take just two discrete steps to the least
squares solution. In the top panel, starting at the origin, ridge regression
shrinks the coefficients together until it finally converges to least squares.
PLS and PCR show similar behavior to ridge, although are discrete and
more extreme. Best subset overshoots the solution and then backtracks.
The behavior of the lasso is intermediate to the other methods. When the
correlation is negative (lower panel), again PLS and PCR roughly track
the ridge path, while all of the methods are more similar to one another.

It is interesting to compare the shrinkage behavior of these different
methods. Recall that ridge regression shrinks all directions, but shrinks
low-variance directions more. Principal components regression leaves M
high-variance directions alone, and discards the rest. Interestingly, it can
be shown that partial least squares also tends to shrink the low-variance
directions, but can actually inflate some of the higher variance directions.
This can make PLS a little unstable, and cause it to have slightly higher
prediction error compared to ridge regression. A full study is given in Frank
and Friedman (1993). These authors conclude that for minimizing predic-
tion error, ridge regression is generally preferable to variable subset selec-
tion, principal components regression and partial least squares. However
the improvement over the latter two methods was only slight.

To summarize, PLS, PCR and ridge regression tend to behave similarly.
Ridge regression may be preferred because it shrinks smoothly, rather than
in discrete steps. Lasso falls somewhere between ridge regression and best
subset regression, and enjoys some of the properties of each.
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3.7 Multiple Outcome Shrinkage and Selection
v

As noted in Section 3.2.4, the least squares estimates in a multiple-output
linear model are simply the individual least squares estimates for each of
the outputs.

To apply selection and shrinkage methods in the multiple output case,
one could apply a univariate technique individually to each outcome or si-
multaneously to all outcomes. With ridge regression, for example, we could
apply formula (3.44) to each of the K columns of the outcome matrix Y,
using possibly different parameters A, or apply it to all columns using the
same value of X\. The former strategy would allow different amounts of
regularization to be applied to different outcomes but require estimation
of k separate regularization parameters Ay, ..., \;, while the latter would
permit all £ outputs to be used in estimating the sole regularization pa-
rameter \.

Other more sophisticated shrinkage and selection strategies that exploit
correlations in the different responses can be helpful in the multiple output
case. Suppose for example that among the outputs we have

Vi = f(X)+ex (3.65)
Yo = f(X)+es (3.66)

i.e., (3.65) and (3.66) share the same structural part f(X) in their models.
It is clear in this case that we should pool our observations on Y; and Y;
to estimate the common f.

Combining responses is at the heart of canonical correlation analysis
(CCA), a data reduction technique developed for the multiple output case.
Similar to PCA, CCA finds a sequence of uncorrelated linear combina-
tions Xv,,, m = 1,...,M of the x;, and a corresponding sequence of
uncorrelated linear combinations Ywu,, of the responses yg, such that the
correlations

Corr? (Y iy, Xy (3.67)

are successively maximized. Note that at most M = min(K, p) directions
can be found. The leading canonical response variates are those linear com-
binations (derived responses) best predicted by the x;; in contrast, the
trailing canonical variates can be poorly predicted by the x;, and are can-
didates for being dropped. The CCA solution is computed using a general-
ized SVD of the sample cross-covariance matrix Y7 X /N (assuming Y and
X are centered; Exercise 3.20).

Reduced-rank regression (Izenman, 1975; van der Merwe and Zidek, 1980)
formalizes this approach in terms of a regression model that explicitly pools
information. Given an error covariance Cov(e) = X, we solve the following
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restricted multivariate regression problem:

N
B (m) = argmin Z(yl —BTz)T2  (y; — BTx). (3.68)

rank(B)=m

With ¥ replaced by the estimate YZY /N, one can show (Exercise 3.21)
that the solution is given by a CCA of Y and X:

B"(m)=BU,,U,,, (3.69)

where U,, is the K x m sub-matrix of U consisting of the first m columns,
and U is the K x M matrix of left canonical vectors uj,us,...,unr. U,
is its generalized inverse. Writing the solution as

B (M) = (XTX)"'X"(YU,,)U;,, (3.70)

we see that reduced-rank regression performs a linear regression on the
pooled response matrix YU,,, and then maps the coefficients (and hence
the fits as well) back to the original response space. The reduced-rank fits
are given by

YU (m) = X(XTX)"'x"YU,, U,

(3.71)
=HYP,,,

where H is the usual linear regression projection operator, and P,, is the
rank-m CCA response projection operator. Although a better estimate of
> would be (Y =XB)7 (Y —XB)/(N —pK), one can show that the solution
remains the same (Exercise 3.22).

Reduced-rank regression borrows strength among responses by truncat-
ing the CCA. Breiman and Friedman (1997) explored with some success
shrinkage of the canonical variates between X and Y, a smooth version of
reduced rank regression. Their proposal has the form (compare (3.69))

BtV = BUAU !, (3.72)

where A is a diagonal shrinkage matrix (the “c+w” stands for “Curds
and Whey,” the name they gave to their procedure). Based on optimal
prediction in the population setting, they show that A has diagonal entries

2

m . m=1,...,M, (3.73)

M = g ——
G+ RI—a)

where ¢,, is the mth canonical correlation coefficient. Note that as the ratio
of the number of input variables to sample size p/N gets small, the shrink-
age factors approach 1. Breiman and Friedman (1997) proposed modified
versions of A based on training data and cross-validation, but the general
form is the same. Here the fitted response has the form

YerY = HYS Y, (3.74)
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where S = UAU™! is the response shrinkage operator.
Breiman and Friedman (1997) also suggested shrinking in both the Y
space and X space. This leads to hybrid shrinkage models of the form

yridse ety — A Y8, (3.75)

where A = X(XTX+ AI)~!X7 is the ridge regression shrinkage operator,
as in (3.46) on page 66. Their paper and the discussions thereof contain
many more details.

3.8 More on the Lasso and Related Path
Algorithms

Since the publication of the LAR algorithm (Efron et al., 2004) there has
been a lot of activity in developing algorithms for fitting regularization
paths for a variety of different problems. In addition, L, regularization has
taken on a life of its own, leading to the development of the field compressed
sensing in the signal-processing literature. (Donoho, 2006a; Candes, 2006).
In this section we discuss some related proposals and other path algorithms,
starting off with a precursor to the LAR algorithm.

3.8.1 Incremental Forward Stagewise Regression

Here we present another LAR-like algorithm, this time focused on forward
stagewise regression. Interestingly, efforts to understand a flexible nonlinear
regression procedure (boosting) led to a new algorithm for linear models
(LAR). In reading the first edition of this book and the forward stagewise

Algorithm 3.4 Incremental Forward Stagewise Regression—FS,.

1. Start with the residual r equal to y and 51, 82,...,3, = 0. All the
predictors are standardized to have mean zero and unit norm.

2. Find the predictor x; most correlated with r

3. Update B; < 8 + 0;, where §; = € -sign[(x;,r)] and € > 0 is a small
step size, and set r <—r — §;x;.

4. Repeat steps 2 and 3 many times, until the residuals are uncorrelated
with all the predictors.

Algorithm 16.1 of Chapter 164, our colleague Brad Efron realized that with

4In the first edition, this was Algorithm 10.4 in Chapter 10.
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FIGURE 3.19. Coefficient profiles for the prostate data. The left panel shows
incremental forward stagewise regression with step size € = 0.01. The right panel
shows the infinitesimal version F'Sy obtained letting e — 0. This profile was fit by
the modification 3.2b to the LAR Algorithm 3.2. In this example the FSy profiles
are monotone, and hence identical to those of lasso and LAR.

linear models, one could explicitly construct the piecewise-linear lasso paths
of Figure 3.10. This led him to propose the LAR procedure of Section 3.4.4,
as well as the incremental version of forward-stagewise regression presented
here.

Consider the linear-regression version of the forward-stagewise boosting
algorithm 16.1 proposed in Section 16.1 (page 608). It generates a coefficient
profile by repeatedly updating (by a small amount €) the coefficient of the
variable most correlated with the current residuals. Algorithm 3.4 gives
the details. Figure 3.19 (left panel) shows the progress of the algorithm on
the prostate data with step size ¢ = 0.01. If §; = (x;,r) (the least-squares
coefficient of the residual on jth predictor), then this is exactly the usual
forward stagewise procedure (FS) outlined in Section 3.3.3.

Here we are mainly interested in small values of €. Letting ¢ — 0 gives
the right panel of Figure 3.19, which in this case is identical to the lasso
path in Figure 3.10. We call this limiting procedure infinitesimal forward
stagewise regression or FSy. This procedure plays an important role in
non-linear, adaptive methods like boosting (Chapters 10 and 16) and is the
version of incremental forward stagewise regression that is most amenable
to theoretical analysis. Bithlmann and Hothorn (2007) refer to the same
procedure as “L2boost”, because of its connections to boosting.
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Efron originally thought that the LAR Algorithm 3.2 was an implemen-
tation of FSy, allowing each tied predictor a chance to update their coeffi-
cients in a balanced way, while remaining tied in correlation. However, he
then realized that the LAR least-squares fit amongst the tied predictors
can result in coefficients moving in the opposite direction to their correla-
tion, which cannot happen in Algorithm 3.4. The following modification of
the LAR algorithm implements FSy:

Algorithm 3.2b Least Angle Regression: 'Sy Modification.

4. Find the new direction by solving the constrained least squares prob-
lem
mbin ||t — X 4b||3 subject to bjs; >0, j € A,

where s; is the sign of (x;,r).

The modification amounts to a non-negative least squares fit, keeping the
signs of the coefficients the same as those of the correlations. One can show
that this achieves the optimal balancing of infinitesimal “update turns”
for the variables tied for maximal correlation (Hastie et al., 2007). Like
lasso, the entire F'Sy path can be computed very efficiently via the LAR
algorithm.

As a consequence of these results, if the LAR profiles are monotone non-
increasing or non-decreasing, as they are in Figure 3.19, then all three
methods—LAR, lasso, and FSyp—give identical profiles. If the profiles are
not monotone but do not cross the zero axis, then LAR and lasso are
identical.

Since FSy is different from the lasso, it is natural to ask if it optimizes
a criterion. The answer is more complex than for lasso; the FSy coefficient
profile is the solution to a differential equation. While the lasso makes op-
timal progress in terms of reducing the residual sum-of-squares per unit
increase in Li-norm of the coefficient vector 3, FSy is optimal per unit
increase in Lq arc-length traveled along the coefficient path. Hence its co-
efficient path is discouraged from changing directions too often.

FSy is more constrained than lasso, and in fact can be viewed as a mono-
tone version of the lasso; see Figure 16.3 on page 614 for a dramatic exam-
ple. FSyp may be useful in p > N situations, where its coefficient profiles
are much smoother and hence have less variance than those of lasso. More
details on FSy are given in Section 16.2.3 and Hastie et al. (2007). Fig-
ure 3.16 includes F'Sy where its performance is very similar to that of the
lasso.
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3.8.2  Piecewise-Linear Path Algorithms

The least angle regression procedure exploits the piecewise linear nature of
the lasso solution paths. It has led to similar “path algorithms” for other
regularized problems. Suppose we solve

B(A) = argming [R(8) + AJ(B)], (3.76)
with
N p
R(B) = Z L(yi, Bo + Z 24;5;), (3.77)

where both the loss function L and the penalty function J are convex.
Then the following are sufficient conditions for the solution path S(\) to
be piecewise linear (Rosset and Zhu, 2007):

1. R is quadratic or piecewise-quadratic as a function of 3, and
2. J is piecewise linear in 3.

This also implies (in principle) that the solution path can be efficiently
computed. Examples include squared- and absolute-error loss, “Huberized”
losses, and the Ly, L, penalties on 8. Another example is the “hinge loss”
function used in the support vector machine. There the loss is piecewise
linear, and the penalty is quadratic. Interestingly, this leads to a piecewise-
linear path algorithm in the dual space; more details are given in Sec-
tion 12.3.5.

3.8.83 The Dantzig Selector
Candes and Tao (2007) proposed the following criterion:

ming|| 3|1 subject to ||X” (y — XfB)||e < s (3.78)

They call the solution the Dantzig selector (DS). It can be written equiva-
lently as

ming||X” (y — XB)||oo subject to ||3|]1 < t. (3.79)

Here || - || denotes the L., norm, the maximum absolute value of the
components of the vector. In this form it resembles the lasso, replacing
squared error loss by the maximum absolute value of its gradient. Note
that as t gets large, both procedures yield the least squares solution if
N < p. If p > N, they both yield the least squares solution with minimum
L1 norm. However for smaller values of ¢, the DS procedure produces a
different path of solutions than the lasso.

Candes and Tao (2007) show that the solution to DS is a linear pro-
gramming problem; hence the name Dantzig selector, in honor of the late
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George Dantzig, the inventor of the simplex method for linear program-
ming. They also prove a number of interesting mathematical properties for
the method, related to its ability to recover an underlying sparse coeffi-
cient vector. These same properties also hold for the lasso, as shown later
by Bickel et al. (2008).

Unfortunately the operating properties of the DS method are somewhat
unsatisfactory. The method seems similar in spirit to the lasso, especially
when we look at the lasso’s stationary conditions (3.58). Like the LAR al-
gorithm, the lasso maintains the same inner product (and correlation) with
the current residual for all variables in the active set, and moves their co-
efficients to optimally decrease the residual sum of squares. In the process,
this common correlation is decreased monotonically (Exercise 3.23), and at
all times this correlation is larger than that for non-active variables. The
Dantzig selector instead tries to minimize the maximum inner product of
the current residual with all the predictors. Hence it can achieve a smaller
maximum than the lasso, but in the process a curious phenomenon can
occur. If the size of the active set is m, there will be m variables tied with
maximum correlation. However, these need not coincide with the active set!
Hence it can include a variable in the model that has smaller correlation
with the current residual than some of the excluded variables (Efron et
al., 2007). This seems unreasonable and may be responsible for its some-
times inferior prediction accuracy. Efron et al. (2007) also show that DS
can yield extremely erratic coefficient paths as the regularization parameter
s is varied.

3.8.4 The Grouped Lasso

In some problems, the predictors belong to pre-defined groups; for example
genes that belong to the same biological pathway, or collections of indicator
(dummy) variables for representing the levels of a categorical predictor. In
this situation it may be desirable to shrink and select the members of a
group together. The grouped lasso is one way to achieve this. Suppose that
the p predictors are divided into L groups, with p, the number in group
{. For ease of notation, we use a matrix X, to represent the predictors
corresponding to the fth group, with corresponding coefficient vector B.
The grouped-lasso minimizes the convex criterion

L L
min <||y—ﬁ01 — 5" X3 +A2¢p7||m||2> , (3.80)

cRP
o (=1 (=1

where the |/p; terms accounts for the varying group sizes, and || - ||z is
the Euclidean norm (not squared). Since the Euclidean norm of a vector
B¢ is zero only if all of its components are zero, this procedure encourages
sparsity at both the group and individual levels. That is, for some values of
A, an entire group of predictors may drop out of the model. This procedure
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was proposed by Bakin (1999) and Lin and Zhang (2006), and studied and
generalized by Yuan and Lin (2007). Generalizations include more general
Ly norms ||n||x = (n" Kn)'/2, as well as allowing overlapping groups of
predictors (Zhao et al., 2008). There are also connections to methods for
fitting sparse additive models (Lin and Zhang, 2006; Ravikumar et al.,
2008).

3.8.5  Further Properties of the Lasso

A number of authors have studied the ability of the lasso and related pro-
cedures to recover the correct model, as N and p grow. Examples of this
work include Knight and Fu (2000), Greenshtein and Ritov (2004), Tropp
(2004), Donoho (2006b), Meinshausen (2007), Meinshausen and Bithlmann
(2006), Tropp (2006), Zhao and Yu (2006), Wainwright (2006), and Bunea
et al. (2007). For example Donoho (2006b) focuses on the p > N case and
considers the lasso solution as the bound ¢ gets large. In the limit this gives
the solution with minimum L; norm among all models with zero training
error. He shows that under certain assumptions on the model matrix X, if
the true model is sparse, this solution identifies the correct predictors with
high probability.

Many of the results in this area assume a condition on the model matrix
of the form

%%§|\X?XS(X5TX5)*1||1 < (1 —¢) for some € € (0, 1]. (3.81)
Here S indexes the subset of features with non-zero coefficients in the true
underlying model, and Xg are the columns of X corresponding to those
features. Similarly S¢ are the features with true coefficients equal to zero,
and Xge the corresponding columns. This says that the least squares coef-
ficients for the columns of X s on Xg are not too large, that is, the “good”
variables § are not too highly correlated with the nuisance variables S¢.
Regarding the coefficients themselves, the lasso shrinkage causes the esti-
mates of the non-zero coefficients to be biased towards zero, and in general
they are not comsistent®. One approach for reducing this bias is to run
the lasso to identify the set of non-zero coefficients, and then fit an un-
restricted linear model to the selected set of features. This is not always
feasible, if the selected set is large. Alternatively, one can use the lasso to
select the set of non-zero predictors, and then apply the lasso again, but
using only the selected predictors from the first step. This is known as the
relazed lasso (Meinshausen, 2007). The idea is to use cross-validation to
estimate the initial penalty parameter for the lasso, and then again for a
second penalty parameter applied to the selected set of predictors. Since

5Statistical consistency means as the sample size grows, the estimates converge to
the true values.
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the variables in the second step have less “competition” from noise vari-
ables, cross-validation will tend to pick a smaller value for A\, and hence
their coefficients will be shrunken less than those in the initial estimate.
Alternatively, one can modify the lasso penalty function so that larger co-
efficients are shrunken less severely; the smoothly clipped absolute deviation
(SCAD) penalty of Fan and Li (2005) replaces A|§| by Jo (8, A), where
2~ xesin(@)[108) < 0+ LT 108> 0] @82)
for some a > 2. The second term in square-braces reduces the amount of
shrinkage in the lasso for larger values of 3, with ultimately no shrinkage
as a — 0o. Figure 3.20 shows the SCAD penalty, along with the lasso and

18] SCAD 18I
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FIGURE 3.20. The lasso and two alternative non-convex penalties designed to
penalize large coefficients less. For SCAD we use A =1 and a =4, and v = % n
the last panel.

|3|1~¥. However this criterion is non-convex, which is a drawback since it
makes the computation much more difficult. The adaptive lasso (Zou, 2006)
uses a weighted penalty of the form »°7_, w;|B;| where w; = /1851, B; is
the ordinary least squares estimate and v > 0. This is a practical approxi-
mation to the |3]|? penalties (¢ = 1 —v here) discussed in Section 3.4.3. The
adaptive lasso yields consistent estimates of the parameters while retaining
the attractive convexity property of the lasso.

3.8.6  Pathwise Coordinate Optimization

An alternate approach to the LARS algorithm for computing the lasso
solution is simple coordinate descent. This idea was proposed by Fu (1998)
and Daubechies et al. (2004), and later studied and generalized by Friedman
et al. (2007), Wu and Lange (2008) and others. The idea is to fix the penalty
parameter A in the Lagrangian form (3.52) and optimize successively over
each parameter, holding the other parameters fixed at their current values.

Suppose the predictors are all standardized to have mean zero and unit
norm. Denote by Bk()\) the current estimate for g5 at penalty parameter
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A. We can rearrange (3.52) to isolate 3,

R(B(N), B;) = Z(yz > @i\ —xijﬁj> + 2D BN+ AlBsl,

i=1 k#j k#j
(3.83)

where we have suppressed the intercept and introduced a factor % for con-
venience. This can be viewed as a univariate lasso problem with response
variable the partial residual y; — yl( =y — Ekﬁ mlkﬁk( ). This has an
explicit solution, resulting in the update

)« S (Z i (yi — 57 A) : (3.84)

Here S(t, \) = sign(t)(|t|— ) is the soft-thresholding operator in Table 3.4
on page 71. The first argument to S(-) is the simple least-squares coefficient
of the partial residual on the standardized variable x;;. Repeated iteration
of (3.84)—cycling through each variable in turn until convergence—yields
the lasso estimate S(\).

We can also use this simple algorithm to efficiently compute the lasso
solutions at a grid of values of A\. We start with the smallest value A ax
for which B()\max) = 0, decrease it a little and cycle through the variables
until convergence. Then A is decreased again and the process is repeated,
using the previous solution as a “warm start” for the new value of \. This
can be faster than the LARS algorithm, especially in large problems. A
key to its speed is the fact that the quantities in (3.84) can be updated
quickly as j varies, and often the update is to leave Bj = 0. On the other
hand, it delivers solutions over a grid of A values, rather than the entire
solution path. The same kind of algorithm can be applied to the elastic
net, the grouped lasso and many other models in which the penalty is a
sum of functions of the individual parameters (Friedman et al., 2010). Tt
can also be applied, with some substantial modifications, to the fused lasso
(Section 18.4.2); details are in Friedman et al. (2007).

3.9 Computational Considerations

Least squares fitting is usually done via the Cholesky decomposition of
the matrix X7X or a QR decomposition of X. With IV observations and p
features, the Cholesky decomposition requires p>+ Np? /2 operations, while
the QR decomposition requires Np? operations. Depending on the relative
size of N and p, the Cholesky can sometimes be faster; on the other hand,
it can be less numerically stable (Lawson and Hansen, 1974). Computation
of the lasso via the LAR algorithm has the same order of computation as
a least squares fit.
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Linear regression is discussed in many statistics books, for example, Seber
(1984), Weisberg (1980) and Mardia et al. (1979). Ridge regression was
introduced by Hoerl and Kennard (1970), while the lasso was proposed by
Tibshirani (1996). Around the same time, lasso-type penalties were pro-
posed in the basis pursuit method for signal processing (Chen et al., 1998).
The least angle regression procedure was proposed in Efron et al. (2004);
related to this is the earlier homotopy procedure of Osborne et al. (2000a)
and Osborne et al. (2000b). Their algorithm also exploits the piecewise
linearity used in the LAR /lasso algorithm, but lacks its transparency. The
criterion for the forward stagewise criterion is discussed in Hastie et al.
(2007). Park and Hastie (2007) develop a path algorithm similar to least
angle regression for generalized regression models. Partial least squares
was introduced by Wold (1975). Comparisons of shrinkage methods may
be found in Copas (1983) and Frank and Friedman (1993).

Exercises

Ex. 3.1 Show that the F statistic (3.13) for dropping a single coefficient
from a model is equal to the square of the corresponding z-score (3.12).

Ex. 3.2 Given data on two variables X and Y, consider fitting a cubic
polynomial regression model f(X) = Z?:o B;X7. In addition to plotting
the fitted curve, you would like a 95% confidence band about the curve.
Consider the following two approaches:

1. At each point xg, form a 95% confidence interval for the linear func-
: TR N3 J
tion a” B =37;_, Bjxy.-

2. Form a 95% confidence set for 5 as in (3.15), which in turn generates
confidence intervals for f(xg).

How do these approaches differ? Which band is likely to be wider? Conduct
a small simulation experiment to compare the two methods.

Ex. 3.3 Gauss—Markov theorem:

(a) Prove the Gauss—Markov theorem: the least squares estimate of a
parameter a” 3 has variance no bigger than that of any other linear
unbiased estimate of a” 3 (Section 3.2.2).

(b) The matrix inequality B < A holds if A — B is positive semidefinite.
Show that if V is the variance-covariance matrix of the least squares
estimate of 8 and V is the variance-covariance matrix of any other
linear unbiased estimate, then V < V.
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Ex. 3.4 Show how the vector of least squares coefficients can be obtained
from a single pass of the Gram—Schmidt procedure (Algorithm 3.1). Rep-
resent your solution in terms of the QR decomposition of X.

Ex. 3.5 Consider the ridge regression problem (3.41). Show that this prob-
lem is equivalent to the problem

N P

Bc — argﬁrcnin{Z[yi - 86— Z(:Uz] — i‘])ﬁ;P + )\Zﬁf} (3.85)
. =

i=1 j=1

Give the correspondence between 3¢ and the original 8 in (3.41). Char-
acterize the solution to this modified criterion. Show that a similar result
holds for the lasso.

Ex. 3.6 Show that the ridge regression estimate is the mean (and mode)
of the posterior distribution, under a Gaussian prior 5 ~ N(0,7I), and
Gaussian sampling model y ~ N(X3, 02I). Find the relationship between
the regularization parameter A in the ridge formula, and the variances 7
and o2.

Ex. 3.7 Assume y; ~ N(Bo + 2 B3,0%),i =1,2,..., N, and the parameters
B;j, j = 1,...,p are each distributed as N(0,72), independently of one
another. Assuming o2 and 72 are known, and Sy is not governed by a
prior (or has a flat improper prior), show that the (minus) log-posterior

density of 8 is proportional to vazl(yZ — By — Zj ziiB5)* + )\Zg):l 572

where \ = 02 /72.

Ex. 3.8 Consider the QR decomposition of the uncentered N x (p + 1)
matrix X (whose first column is all ones), and the SVD of the N x p
centered matrix X. Show that Q- and U span the same subspace, where
Q> is the sub-matrix of Q with the first column removed. Under what
circumstances will they be the same, up to sign flips?

Ex. 3.9 Forward stepwise regression. Suppose we have the QR decomposi-
tion for the N x ¢ matrix X; in a multiple regression problem with response
y, and we have an additional p — ¢ predictors in the matrix X5. Denote the
current residual by r. We wish to establish which one of these additional
variables will reduce the residual-sum-of squares the most when included
with those in X;. Describe an efficient procedure for doing this.

Ex. 3.10 Backward stepwise regression. Suppose we have the multiple re-
gression fit of y on X, along with the standard errors and Z-scores as in
Table 3.2. We wish to establish which variable, when dropped, will increase
the residual sum-of-squares the least. How would you do this?

Ex. 3.11 Show that the solution to the multivariate linear regression prob-
lem (3.40) is given by (3.39). What happens if the covariance matrices 3;
are different for each observation?
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Ex. 3.12 Show that the ridge regression estimates can be obtained by
ordinary least squares regression on an augmented data set. We augment
the centered matrix X with p additional rows v/AI, and augment y with p
zeros. By introducing artificial data having response value zero, the fitting
procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are
implemented by adding artificial data examples that satisfy them.

Ex. 3.13 Derive the expression (3.62), and show that 3P (p) = j'.

Ex. 3.14 Show that in the orthogonal case, PLS stops after m = 1 steps,
because subsequent ¢,,; in step 2 in Algorithm 3.3 are zero.

Ex. 3.15 Verify expression (3.64), and hence show that the partial least
squares directions are a compromise between the ordinary regression coef-
ficient and the principal component directions.

Ex. 3.16 Derive the entries in Table 3.4, the explicit forms for estimators
in the orthogonal case.

Ex. 3.17 Repeat the analysis of Table 3.3 on the spam data discussed in
Chapter 1.

Ex. 3.18 Read about conjugate gradient algorithms (Murray et al., 1981, for
example), and establish a connection between these algorithms and partial
least squares.

Ex. 3.19 Show that ||3"98°|| increases as its tuning parameter A — 0. Does
the same property hold for the lasso and partial least squares estimates?
For the latter, consider the “tuning parameter” to be the successive steps
in the algorithm.

Ex. 3.20 Consider the canonical-correlation problem (3.67). Show that the
leading pair of canonical variates u; and v; solve the problem

max  u’ (YTX)v, (3.86)
wT(YTY)u=1
vp (XTX)v=1
a generalized SVD problem. Show that the solution is given by u; =
(YTY) 2w}, and v; = (XTX) 20}, where u} and v} are the leading left
and right singular vectors in

(YTY)2(Y'X)(X"X)" 2 = U*D*V*7. (3.87)

Show that the entire sequence y,, vy, m =1,..., min(K,p) is also given
by (3.87).

Ex. 3.21 Show that the solution to the reduced-rank regression problem
(3.68), with X estimated by YTY /N, is given by (3.69). Hint: Transform
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YtoY"= YET%, and solved in terms of the canonical vectors u},. Show
that U, = ZféUfn, and a generalized inverse is U, = U;LTE%.

Ex. 3.22 Show that the solution in Exercise 3.21 does not change if 3 is
estimated by the more natural quantity (Y — XB)7(Y — XB)/(N — pK).

Ex. 3.23 Consider a regression problem with all variables and response hav-
ing mean zero and standard deviation one. Suppose also that each variable
has identical absolute correlation with the response:

1

N‘<XJ»Y>| =\NJj=1...,p

Let B be the least-squares coeflicient of y on X, and let u(a) = aXB for
a € [0,1] be the vector that moves a fraction « toward the least squares fit
u. Let RSS be the residual sum-of-squares from the full least squares fit.

(a) Show that

1

Sy —u@) = (-, j=1,....p.

and hence the correlations of each x; with the residuals remain equal
in magnitude as we progress toward u.

(b) Show that these correlations are all equal to
(1-a)
V(- ) 4 2Cc2) . gy

AMa) = A,

and hence they decrease monotonically to zero.

(¢) Use these results to show that the LAR algorithm in Section 3.4.4
keeps the correlations tied and monotonically decreasing, as claimed
in (3.55).

Ex. 3.24 LAR directions. Using the notation around equation (3.55) on
page 74, show that the LAR direction makes an equal angle with each of
the predictors in Aj.

Ex. 3.25 LAR look-ahead (Efron et al., 2004, Sec. 2). Starting at the be-
ginning of the kth step of the LAR algorithm, derive expressions to identify
the next variable to enter the active set at step k+ 1, and the value of a at
which this occurs (using the notation around equation (3.55) on page 74).

Ex. 3.26 Forward stepwise regression enters the variable at each step that
most reduces the residual sum-of-squares. LAR adjusts variables that have
the most (absolute) correlation with the current residuals. Show that these
two entry criteria are not necessarily the same. [Hint: let x; 4 be the jth
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variable, linearly adjusted for all the variables currently in the model. Show
that the first criterion amounts to identifying the j for which Cor(x; 4,r)
is largest in magnitude.

Ex. 3.27 Lasso and LAR: Consider the lasso problem in Lagrange multiplier
form: with L(3) = %Zz(yz — Zj z;j37)%, we minimize

L(B) + A 1551 (3.88)

for fixed A > 0.
(a) Setting 5, = B;-r — B; with B;-r,ﬂ; > 0, expression (3.88) becomes
L(B) + )\Zj(ﬂ;r + B; ). Show that the Lagrange dual function is
L)+ A _(BF +87) =Y N B =D A6 (3.89)
J J

J

and the Karush—Kuhn—Tucker optimality conditions are

VL(B); + A=A = 0
=VLB)j+A=A; = 0
AXBF =0
A By =0,

along with the non-negativity constraints on the parameters and all
the Lagrange multipliers.

(b) Show that [VL(5),| < A Vj, and that the KKT conditions imply one
of the following three scenarios:

A=0 = VL(B),=0Vj
By >0,A>0 = A =0, VL(B); =—-A<0, 8, =0
By >0, A>0 = X7 =0, VL(B); =X >0, 57 =0.
Hence show that for any “active” predictor having ; # 0, we must
have VL(5); = =X if §; > 0, and VL(8); = X if 5; < 0. Assuming

the predictors are standardized, relate A to the correlation between
the jth predictor and the current residuals.

(¢) Suppose that the set of active predictors is unchanged for A\g > A > ;.
Show that there is a vector 7o such that

B(A) = B(h) = (A = Ao)ro (3.90)

Thus the lasso solution path is linear as A ranges from g to A; (Efron
et al., 2004; Rosset and Zhu, 2007).
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Ex. 3.28 Suppose for a given ¢ in (3.51), the fitted lasso coefficient for
variable X; is 8; = a. Suppose we augment our set of variables with an
identical copy X; = Xj;. Characterize the effect of this exact collinearity

by describing the set of solutions for Bj and Bj*, using the same value of t.

Ex. 3.29 Suppose we run a ridge regression with parameter A\ on a single
variable X, and get coefficient a. We now include an exact copy X* = X,
and refit our ridge regression. Show that both coefficients are identical, and
derive their value. Show in general that if m copies of a variable X; are
included in a ridge regression, their coefficients are all the same.

Ex. 3.30 Consider the elastic-net optimization problem:
Hgnlly—Xﬂ\IQJr/\[allﬁl\%Jr(l—a)||5\|1]~ (3.91)

Show how one can turn this into a lasso problem, using an augmented
version of X and y.
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4

Linear Methods for Classification

4.1 Introduction

In this chapter we revisit the classification problem and focus on linear
methods for classification. Since our predictor G(x) takes values in a dis-
crete set G, we can always divide the input space into a collection of regions
labeled according to the classification. We saw in Chapter 2 that the bound-
aries of these regions can be rough or smooth, depending on the prediction
function. For an important class of procedures, these decision boundaries
are linear; this is what we will mean by linear methods for classification.
There are several different ways in which linear decision boundaries can
be found. In Chapter 2 we fit linear regression models to the class indicator
variables, and classify to the largest fit. Suppose there are K classes, for
convenience labeled 1,2,..., K, and the fitted linear model for the kth
indicator response variable is fi (z) = Bro + B,{z The decision boundary
between class k and £ is that set of points for which fi(z) = fi(z), that is,
the set {z : (Bro — Bwo) + (Bx — Be)Tx = 0}, an affine set or hyperplane.!
Since the same is true for any pair of classes, the input space is divided
into regions of constant classification, with piecewise hyperplanar decision
boundaries. This regression approach is a member of a class of methods
that model discriminant functions oy (z) for each class, and then classify «
to the class with the largest value for its discriminant function. Methods

LStrictly speaking, a hyperplane passes through the origin, while an affine set need
not. We sometimes ignore the distinction and refer in general to hyperplanes.

This is page 101
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that model the posterior probabilities Pr(G = k|X = x) are also in this
class. Clearly, if either the d(x) or Pr(G = k|X = x) are linear in z, then
the decision boundaries will be linear.

Actually, all we require is that some monotone transformation of J; or
Pr(G = k|X = z) be linear for the decision boundaries to be linear. For
example, if there are two classes, a popular model for the posterior proba-
bilities is

- . exp(Bo+ prx)
Pr(G=1|X =2) = 1+ exp(fo + fTz)’

1
Pr(G=2X=x)= T+ oxp(Bo + FT)"

(4.1)

Here the monotone transformation is the logit transformation: log[p/(1—p)],
and in fact we see that

Pr(G=1X =x)
Pr(G =2|X =xz)

log = Bo + Bz (4.2)

The decision boundary is the set of points for which the log-odds are zero,
and this is a hyperplane defined by {1:|BO + 8T = O}. We discuss two very
popular but different methods that result in linear log-odds or logits: linear
discriminant analysis and linear logistic regression. Although they differ in
their derivation, the essential difference between them is in the way the
linear function is fit to the training data.

A more direct approach is to explicitly model the boundaries between
the classes as linear. For a two-class problem in a p-dimensional input
space, this amounts to modeling the decision boundary as a hyperplane—in
other words, a normal vector and a cut-point. We will look at two methods
that explicitly look for “separating hyperplanes.” The first is the well-
known perceptron model of Rosenblatt (1958), with an algorithm that finds
a separating hyperplane in the training data, if one exists. The second
method, due to Vapnik (1996), finds an optimally separating hyperplane if
one exists, else finds a hyperplane that minimizes some measure of overlap
in the training data. We treat the separable case here, and defer treatment
of the nonseparable case to Chapter 12.

While this entire chapter is devoted to linear decision boundaries, there is
considerable scope for generalization. For example, we can expand our vari-
ableset X1, ..., X, by including their squares and cross-products X2, X2 ...
X1 X, ..., thereby adding p(p+ 1)/2 additional variables. Linear functions
in the augmented space map down to quadratic functions in the original
space—hence linear decision boundaries to quadratic decision boundaries.
Figure 4.1 illustrates the idea. The data are the same: the left plot uses
linear decision boundaries in the two-dimensional space shown, while the
right plot uses linear decision boundaries in the augmented five-dimensional
space described above. This approach can be used with any basis transfor-
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1Xo, X}, X2, Linear inequalities in this
space are quadratic inequalities in the original space.

mation h(X) where h : R? — IR? with ¢ > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yz, k=1,..., K,
with Yy = 1 if G = k else 0. These are collected together in a vector
Y = (Y1,...,Yk), and the N training instances of these form an N x K
indicator response matriz Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Y = X(XTX)"'XTy. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-

cient vector for each response column yy, and hence a (p+1) x K coefficient

matrix B = (X7X)"'X7Y. Here X is the model matrix with p+1 columns

corresponding to the p inputs, and a leading column of 1’s for the intercept.
A new observation with input x is classified as follows:

e compute the fitted output f(x)T = (1, xT)B, a K vector;

e identify the largest component and classify accordingly:

Glz) = argmaxkegfk (). (4.4)
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What is the rationale for this approach? One rather formal justification
is to view the regression as an estimate of conditional expectation. For the
random variable Y, E(Y;|X = z) = Pr(G = k|X = x), so conditional
expectation of each of the Y seems a sensible goal. The real issue is: how
good an approximation to conditional expectation is the rather rigid linear
regression model? Alternatively, are the fk () reasonable estimates of the
posterior probabilities Pr(G = k| X = z), and more importantly, does this
matter?

It is quite straightforward to verify that ), o fe(z) =1 for any z, as
long as there is an intercept in the model (column of 1’s in X). However,
the fk(x) can be negative or greater than 1, and typically some are. This
is a consequence of the rigid nature of linear regression, especially if we
make predictions outside the hull of the training data. These violations in
themselves do not guarantee that this approach will not work, and in fact
on many problems it gives similar results to more standard linear meth-
ods for classification. If we allow linear regression onto basis expansions
h(X) of the inputs, this approach can lead to consistent estimates of the
probabilities. As the size of the training set N grows bigger, we adaptively
include more basis elements so that linear regression onto these basis func-
tions approaches conditional expectation. We discuss such approaches in
Chapter 5.

A more simplistic viewpoint is to construct targets tj for each class,
where tj is the kth column of the K x K identity matrix. Our prediction
problem is to try and reproduce the appropriate target for an observation.
With the same coding as before, the response vector y; (ith row of Y) for
observation ¢ has the value y; = t; if g; = k. We might then fit the linear
model by least squares:

N
min > [l = (1,27 B (4.5

The criterion is a sum-of-squared Euclidean distances of the fitted vectors
from their targets. A new observation is classified by computing its fitted

vector f(x) and classifying to the closest target:

Gla) = argmin 1/ (@) =t (4.6)

This is exactly the same as the previous approach:

e The sum-of-squared-norm criterion is exactly the criterion for multi-
ple response linear regression, just viewed slightly differently. Since
a squared norm is itself a sum of squares, the components decouple
and can be rearranged as a separate linear model for each element.
Note that this is only possible because there is nothing in the model
that binds the different responses together.
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Linear Regression Linear Discriminant Analysis

Xo

X1 Xl

FIGURE 4.2. The data come from three classes in IR? and are easily separated
by linear decision boundaries. The right plot shows the boundaries found by linear
discriminant analysis. The left plot shows the boundaries found by linear regres-
sion of the indicator response variables. The middle class is completely masked
(never dominates).

e The closest target classification rule (4.6) is easily seen to be exactly
the same as the maximum fitted component criterion (4.4).

There is a serious problem with the regression approach when the number
of classes K > 3, especially prevalent when K is large. Because of the rigid
nature of the regression model, classes can be masked by others. Figure 4.2
illustrates an extreme situation when K = 3. The three classes are perfectly
separated by linear decision boundaries, yet linear regression misses the
middle class completely.

In Figure 4.3 we have projected the data onto the line joining the three
centroids (there is no information in the orthogonal direction in this case),
and we have included and coded the three response variables Y7, Y5 and
Y3. The three regression lines (left panel) are included, and we see that
the line corresponding to the middle class is horizontal and its fitted values
are never dominant! Thus, observations from class 2 are classified either
as class 1 or class 3. The right panel uses quadratic regression rather than
linear regression. For this simple example a quadratic rather than linear
fit (for the middle class at least) would solve the problem. However, it
can be seen that if there were four rather than three classes lined up like
this, a quadratic would not come down fast enough, and a cubic would
be needed as well. A loose but general rule is that if K > 3 classes are
lined up, polynomial terms up to degree K — 1 might be needed to resolve
them. Note also that these are polynomials along the derived direction
passing through the centroids, which can have arbitrary orientation. So in
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FIGURE 4.3. The effects of masking on linear regression in IR for a three-class
problem. The rug plot at the base indicates the positions and class membership of
each observation. The three curves in each panel are the fitted regressions to the
three-class indicator variables; for example, for the blue class, Ypiue is 1 for the
blue observations, and O for the green and orange. The fits are linear and quadratic
polynomials. Above each plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.

p-dimensional input space, one would need general polynomial terms and
cross-products of total degree K — 1, O(pX~1) terms in all, to resolve such
worst-case scenarios.

The example is extreme, but for large K and small p such maskings
naturally occur. As a more realistic illustration, Figure 4.4 is a projection
of the training data for a vowel recognition problem onto an informative
two-dimensional subspace. There are K = 11 classes in p = 10 dimensions.
This is a difficult classification problem, and the best methods achieve
around 40% errors on the test data. The main point here is summarized in
Table 4.1; linear regression has an error rate of 67%, while a close relative,
linear discriminant analysis, has an error rate of 56%. It seems that masking
has hurt in this case. While all the other methods in this chapter are based
on linear functions of = as well, they use them in such a way that avoids
this masking problem.

4.3 Linear Discriminant Analysis

Decision theory for classification (Section 2.4) tells us that we need to know
the class posteriors Pr(G|X) for optimal classification. Suppose fi(z) is
the class-conditional density of X in class G = k, and let 73 be the prior
probability of class k, with Zszl mr = 1. A simple application of Bayes



4.3 Linear Discriminant Analysis 107

Linear Discriminant Analysis

<
% &
H
0
Y .09
o%@ o 2@° %Wy 0 a9
o~ — 000@0 0% o
) o
O Ne.)] Q o
(o) 0 6@ 0
0 O 0, O @ %0 o@md
° oO @O % g g Co %0 0o
0 o
o o o o0 O 40 o 0
o 9 o %0 0 ®g 2% 06 6, o 09 Ooo
© (0] 0 U
a 8%) o g 0 @ o
S5 ©- 09 ‘ngoeo & %o 000 ©
£ 0 o o o ®
§ o o8 R8 QT o o ® ° .
= o o O o © o 8 00 0 & o
. 0Oo0p ® 0 0 0 o o
o 0 d’ o o %0 8
o o o 0 0002, 00
o~ 0 0 o-- 0 o 00
o o 0 o o 0%0Q 0
© o o 00 o O
£ 00 0o ? o O 0o 40
2 [N ®0d o, e o
3 @0 (6 o ® o 09 go
O o (ﬁ chc)) o Is)
(v o
< 00y 00 B0 2
o
o
o oo
o
t?i
o o
I I I I I
-4 2 0 2 4

Coordinate 1 for Training Data

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X € R'®, and this is the best view in terms of a LDA model
(Section 4.3.8). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training  Test
Linear regression  0.48 0.67
Linear discriminant analysis  0.32 0.56
Quadratic discriminant analysis  0.01 0.53

Logistic regression  0.22 0.51
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theorem gives us

fr(z)m
Zf:l fe(x)ﬂe
We see that in terms of ability to classify, having the fx(x) is almost equiv-

alent to having the quantity Pr(G = k|X = ).
Many techniques are based on models for the class densities:

Pr(G=kX =2)= (4.7)

e linear and quadratic discriminant analysis use Gaussian densities;

e more flexible mixtures of Gaussians allow for nonlinear decision bound-
aries (Section 6.8);

e general nonparametric density estimates for each class density allow
the most flexibility (Section 6.6.2);

e Naive Bayes models are a variant of the previous case, and assume
that each of the class densities are products of marginal densities;
that is, they assume that the inputs are conditionally independent in
each class (Section 6.6.3).

Suppose that we model each class density as multivariate Gaussian

1 T (g
fil) = gy 2 ), (48)

Linear discriminant analysis (LDA) arises in the special case when we
assume that the classes have a common covariance matrix 3, = X Vk. In
comparing two classes k and ¢, it is sufficient to look at the log-ratio, and
we see that

Pr(G =Ek|X =x) Ji(2) Tk
1 =1 log —=&
©8 Pr(G=/4X =x) ©8 fo(x) +log )
™ 1 - 4.9
=log —* — = (u + )" S (tx — pue) (4.9)
T 2

+ TS (e — pe),

an equation linear in x. The equal covariance matrices cause the normal-
ization factors to cancel, as well as the quadratic part in the exponents.
This linear log-odds function implies that the decision boundary between
classes k and —the set where Pr(G = k|X = z) = Pr(G = (| X = z)—is
linear in z; in p dimensions a hyperplane. This is of course true for any pair
of classes, so all the decision boundaries are linear. If we divide IR? into
regions that are classified as class 1, class 2, etc., these regions will be sep-
arated by hyperplanes. Figure 4.5 (left panel) shows an idealized example
with three classes and p = 2. Here the data do arise from three Gaus-
sian distributions with a common covariance matrix. We have included in
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FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

the figure the contours corresponding to 95% highest probability density,
as well as the class centroids. Notice that the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance ¥ were spherical ¢2I, and the class
priors were equal. From (4.9) we see that the linear discriminant functions

_ 1 -
Sp(z) =TSy — i,ugz Y + log Ty (4.10)

are an equivalent description of the decision rule, with G(x) = argmax;, o (z).
In practice we do not know the parameters of the Gaussian distributions,
and will need to estimate them using our training data:

e 7, = N /N, where Ny is the number of class-k observations;
® =y 1 Ti/Ni;

o X=S00 %, (@i — i) (@i — )" /(N — K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear regression, as in (4.5). The
LDA rule classifies to class 2 if

A1 1 -1,

et (12 — ) > 5 (A2 +i1)"S (i — ) —log(Na/Ny),  (4.11)
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and class 1 otherwise. Suppose we code the targets in the two classes as 41
and —1, respectively. It is easy to show that the coeflicient vector from least
squares is proportional to the LDA direction given in (4.11) (Exercise 4.2).
[In fact, this correspondence occurs for any (distinct) coding of the targets;
see Exercise 4.2]. However unless N7 = Ny the intercepts are different and
hence the resulting decision rules are different.

Since this derivation of the LDA direction via least squares does not use a
Gaussian assumption for the features, its applicability extends beyond the
realm of Gaussian data. However the derivation of the particular intercept
or cut-point given in (4.11) does require Gaussian data. Thus it makes
sense to instead choose the cut-point that empirically minimizes training
error for a given dataset. This is something we have found to work well in
practice, but have not seen it mentioned in the literature.

With more than two classes, LDA is not the same as linear regression of
the class indicator matrix, and it avoids the masking problems associated
with that approach (Hastie et al., 1994). A correspondence between regres-
sion and LDA can be established through the notion of optimal scoring,
discussed in Section 12.5.

Getting back to the general discriminant problem (4.8), if the X are
not assumed to be equal, then the convenient cancellations in (4.9) do not
occur; in particular the pieces quadratic in x remain. We then get quadratic
discriminant functions (QDA),

1 1 _
Op(z) = -5 log | 2| — 5(9& — )T N — ) + log .. (4.12)

The decision boundary between each pair of classes k and ¢ is described by
a quadratic equation {z : dx(x) = d¢(x)}.

Figure 4.6 shows an example (from Figure 4.1 on page 103) where the
three classes are Gaussian mixtures (Section 6.8) and the decision bound-
aries are approximated by quadratic equations in x. Here we illustrate
two popular ways of fitting these quadratic boundaries. The right plot
uses QDA as described here, while the left plot uses LDA in the enlarged
five-dimensional quadratic polynomial space. The differences are generally
small; QDA is the preferred approach, with the LDA method a convenient
substitute 2.

The estimates for QDA are similar to those for LDA, except that separate
covariance matrices must be estimated for each class. When p is large this
can mean a dramatic increase in parameters. Since the decision boundaries
are functions of the parameters of the densities, counting the number of
parameters must be done with care. For LDA, it secems there are (K —
1) x (p + 1) parameters, since we only need the differences dx(x) — dx ()

2For this figure and many similar figures in the book we compute the decision bound-
aries by an exhaustive contouring method. We compute the decision rule on a fine lattice
of points, and then use contouring algorithms to compute the boundaries.
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FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1X2, X7, X3). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

between the discriminant functions where K is some pre-chosen class (here
we have chosen the last), and each difference requires p + 1 parameters®.
Likewise for QDA there will be (K — 1) x {p(p + 3)/2 + 1} parameters.
Both LDA and QDA perform well on an amazingly large and diverse set
of classification tasks. For example, in the STATLOG project (Michie et
al., 1994) LDA was among the top three classifiers for 7 of the 22 datasets,
QDA among the top three for four datasets, and one of the pair were in the
top three for 10 datasets. Both techniques are widely used, and entire books
are devoted to LDA. It seems that whatever exotic tools are the rage of the
day, we should always have available these two simple tools. The question
arises why LDA and QDA have such a good track record. The reason is not
likely to be that the data are approximately Gaussian, and in addition for
LDA that the covariances are approximately equal. More likely a reason is
that the data can only support simple decision boundaries such as linear or
quadratic, and the estimates provided via the Gaussian models are stable.
This is a bias variance tradeoff—we can put up with the bias of a linear
decision boundary because it can be estimated with much lower variance
than more exotic alternatives. This argument is less believable for QDA,
since it can have many parameters itself, although perhaps fewer than the
non-parametric alternatives.

3 Although we fit the covariance matrix 3 to compute the LDA discriminant functions,
a much reduced function of it is all that is required to estimate the O(p) parameters
needed to compute the decision boundaries.
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Regularized Discriminant Analysis on the Vowel Data
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FIGURE 4.7. Test and training errors for the vowel data, using regularized
discriminant analysis with a series of values of o € [0,1]. The optimum for the
test data occurs around o = 0.9, close to quadratic discriminant analysis.

4.3.1 Regularized Discriminant Analysis

Friedman (1989) proposed a compromise between LDA and QDA, which
allows one to shrink the separate covariances of QDA toward a common
covariance as in LDA. These methods are very similar in flavor to ridge
regression. The regularized covariance matrices have the form

Si(a) = a3, + (1 —a)3, (4.13)

where 32 is the pooled covariance matrix as used in LDA. Here a € [0, 1]
allows a continuum of models between LDA and QDA, and needs to be
specified. In practice o can be chosen based on the performance of the
model on validation data, or by cross-validation.

Figure 4.7 shows the results of RDA applied to the vowel data. Both
the training and test error improve with increasing «, although the test
error increases sharply after o = 0.9. The large discrepancy between the
training and test error is partly due to the fact that there are many repeat
measurements on a small number of individuals, different in the training
and test set.

Similar modifications allow 3 itself to be shrunk toward the scalar
covariance,

B(y) =2 + (1 —9)6°1 (4.14)

for v € [0, 1]. Replacing S in (4.13) by ﬁ](’y) leads to a more general family
of covariances ﬁ)(a, v) indexed by a pair of parameters.

In Chapter 12, we discuss other regularized versions of LDA, which are
more suitable when the data arise from digitized analog signals and images.
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In these situations the features are high-dimensional and correlated, and the
LDA coefficients can be regularized to be smooth or sparse in the original
domain of the signal. This leads to better generalization and allows for
easier interpretation of the coefficients. In Chapter 18 we also deal with
very high-dimensional problems, where for example the features are gene-
expression measurements in microarray studies. There the methods focus
on the case v = 0 in (4.14), and other severely regularized versions of LDA.

4.8.2  Computations for LDA

As a lead-in to the next topic, we briefly digress on the computations
required for LDA and especially QDA. Their computations are simplified
by diagonalizing 3 or 3. For the latter, suppose we compute the eigen-
decomposition for each f]k = UkaUg, where Uy is p x p orthonormal,
and Dy, a diagonal matrix of positive eigenvalues dyy. Then the ingredients
for 0 (z) (4.12) are

o (@— )8, (@ — ) = [UT (z — i) "Dy (UL (& — fue);

° log\ﬁ]k| = ,logd.

In light of the computational steps outlined above, the LDA classifier
can be implemented by the following pair of steps:

e Sphere the data with respect to the common covariance estimate poF
X* D’%UTX, where 3 = UDU7. The common covariance esti-
mate of X* will now be the identity.

e Classify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities 7.

4.3.8  Reduced-Rank Linear Discriminant Analysis

So far we have discussed LDA as a restricted Gaussian classifier. Part of
its popularity is due to an additional restriction that allows us to view
informative low-dimensional projections of the data.

The K centroids in p-dimensional input space lie in an affine subspace
of dimension < K — 1, and if p is much larger than K, this will be a con-
siderable drop in dimension. Moreover, in locating the closest centroid, we
can ignore distances orthogonal to this subspace, since they will contribute
equally to each class. Thus we might just as well project the X* onto this
centroid-spanning subspace Hg 1, and make distance comparisons there.
Thus there is a fundamental dimension reduction in LDA, namely, that we
need only consider the data in a subspace of dimension at most K — 1.
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If K = 3, for instance, this could allow us to view the data in a two-
dimensional plot, color-coding the classes. In doing so we would not have
relinquished any of the information needed for LDA classification.

What if K > 37 We might then ask for a L < K —1 dimensional subspace
H; C Hg_q1 optimal for LDA in some sense. Fisher defined optimal to
mean that the projected centroids were spread out as much as possible in
terms of variance. This amounts to finding principal component subspaces
of the centroids themselves (principal components are described briefly in
Section 3.5.1, and in more detail in Section 14.5.1). Figure 4.4 shows such an
optimal two-dimensional subspace for the vowel data. Here there are eleven
classes, each a different vowel sound, in a ten-dimensional input space. The
centroids require the full space in this case, since K — 1 = p, but we have
shown an optimal two-dimensional subspace. The dimensions are ordered,
so we can compute additional dimensions in sequence. Figure 4.8 shows four
additional pairs of coordinates, also known as canonical or discriminant
variables. In summary then, finding the sequences of optimal subspaces
for LDA involves the following steps:

e compute the K x p matrix of class centroids M and the common
covariance matrix W' (for within-class covariance);

e compute M* = MW 2 using the eigen-decomposition of W

e compute B*, the covariance matrix of M* (B for between-class covari-
ance), and its eigen-decomposition B* = V*D 5V*T. The columns
v; of V* in sequence from first to last define the coordinates of the
optimal subspaces.

Combining all these operations the ¢th discriminant variable is given by
Zy = vl X with vy = W30},

Fisher arrived at this decomposition via a different route, without refer-
ring to Gaussian distributions at all. He posed the problem:

Find the linear combination Z = aT X such that the between-
class variance is maximized relative to the within-class variance.

Again, the between class variance is the variance of the class means of
Z, and the within class variance is the pooled variance about the means.
Figure 4.9 shows why this criterion makes sense. Although the direction
joining the centroids separates the means as much as possible (i.e., max-
imizes the between-class variance), there is considerable overlap between
the projected classes due to the nature of the covariances. By taking the
covariance into account as well, a direction with minimum overlap can be
found.

The between-class variance of Z is a”Ba and the within-class variance
a”Wa, where W is defined earlier, and B is the covariance matrix of the
class centroid matrix M. Note that B + W = T, where T is the total
covariance matrix of X, ignoring class information.
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FIGURE 4.8. Four projections onto pairs of canonical variates. Notice that as
the rank of the canonical variates increases, the centroids become less spread out.

In the lower right panel they appear to be superimposed, and the classes most
confused.
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FIGURE 4.9. Although the line joining the centroids defines the direction of
greatest centroid spread, the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this overlap for Gaussian data
(right panel).

Fisher’s problem therefore amounts to maximizing the Rayleigh quotient,

T
a” Ba
4.15
N (4.15)
or equivalently
max a® Ba subject to a? Wa = 1. (4.16)

This is a generalized eigenvalue problem, with a given by the largest
eigenvalue of W1B. It is not hard to show (Exercise 4.1) that the optimal
a1 is identical to vy defined above. Similarly one can find the next direction
az, orthogonal in W to aj, such that adBas/al Way is maximized; the
solution is as = vy, and so on. The ay are referred to as discriminant
coordinates, not to be confused with discriminant functions. They are also
referred to as canonical variates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X. This line is pursued in Section 12.5.

To summarize the developments so far:

e Gaussian classification with common covariances leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data
with respect to W, and classifying to the closest centroid (modulo
log ) in the sphered space.

e Since only the relative distances to the centroids count, one can con-
fine the data to the subspace spanned by the centroids in the sphered
space.

e This subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. This decomposition is iden-
tical to the decomposition due to Fisher.
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LDA and Dimension Reduction on the Vowel Data
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FIGURE 4.10. Training and test error rates for the vowel data, as a function
of the dimension of the discriminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision boundaries in this space.

The reduced subspaces have been motivated as a data reduction (for
viewing) tool. Can they also be used for classification, and what is the
rationale? Clearly they can, as in our original derivation; we simply limit
the distance-to-centroid calculations to the chosen subspace. One can show
that this is a Gaussian classification rule with the additional restriction
that the centroids of the Gaussians lie in a L-dimensional subspace of IR”.
Fitting such a model by maximum likelihood, and then constructing the
posterior probabilities using Bayes’ theorem amounts to the classification
rule described above (Exercise 4.8).

Gaussian classification dictates the logm, correction factor in the dis-
tance calculation. The reason for this correction can be seen in Figure 4.9.
The misclassification rate is based on the area of overlap between the two
densities. If the 7, are equal (implicit in that figure), then the optimal
cut-point is midway between the projected means. If the 7, are not equal,
moving the cut-point toward the smaller class will improve the error rate.
As mentioned earlier for two classes, one can derive the linear rule using
LDA (or any other method), and then choose the cut-point to minimize
misclassification error over the training data.

As an example of the benefit of the reduced-rank restriction, we return
to the vowel data. There are 11 classes and 10 variables, and hence 10
possible dimensions for the classifier. We can compute the training and
test error in each of these hierarchical subspaces; Figure 4.10 shows the
results. Figure 4.11 shows the decision boundaries for the classifier based
on the two-dimensional LDA solution.

There is a close connection between Fisher’s reduced rank discriminant
analysis and regression of an indicator response matrix. It turns out that
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Classification in Reduced Subspace

Canonical Coordinate 2

Canonical Coordinate 1

FIGURE 4.11. Decision boundaries for the vowel training data, in the two-di-
mensional subspace spanned by the first two canonical variates. Note that in
any higher-dimensional subspace, the decision boundaries are higher-dimensional
affine planes, and could not be represented as lines.
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LDA amounts to the regression followed by an eigen-decomposition of
YZY. In the case of two classes, there is a single discriminant variable
that is identical up to a scalar multiplication to either of the columns of Y.
These connections are developed in Chapter 12. A related fact is that if one
transforms the original predictors X to Y, then LDA using Y is identical
to LDA in the original space (Exercise 4.3).

4.4  Logistic Regression

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in x, while at the same
time ensuring that they sum to one and remain in [0, 1]. The model has
the form

Pr(G=1X =x)

_ T
10gPr(G=K|X:x)7B10+ﬁlx
Pr(G =2|X ==2) T
1 _
B G=RIX =) 00T (417

Pr(G=K—-1|X =x)

log PG =KX =)

= Bx-1)0 + Bk 1.

The model is specified in terms of K — 1 log-odds or logit transformations
(reflecting the constraint that the probabilities sum to one). Although the
model uses the last class as the denominator in the odds-ratios, the choice
of denominator is arbitrary in that the estimates are equivariant under this
choice. A simple calculation shows that

T
Pr(G=klX=2) = e’;p_(f"’ﬁﬂkx) — k=1, K1,
L+ exp(Bewo + B @)

1
K—1 T
1+ Ez:1 exp(Beo + By )

Pr(G=K|X =x) (4.18)

and they clearly sum to one. To emphasize the dependence on the entire pa-
rameter set 0 = {B10,57,... 7/8(K—1)07B[7;_1}7 we denote the probabilities
Pr(G = k|X = x) = pi(x;0).

When K = 2, this model is especially simple, since there is only a single
linear function. It is widely used in biostatistical applications where binary
responses (two classes) occur quite frequently. For example, patients survive
or die, have heart disease or not, or a condition is present or absent.
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4.4.1 Fitting Logistic Regression Models

Logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X. Since Pr(G|X) completely specifies the
conditional distribution, the multinomial distribution is appropriate. The
log-likelihood for N observations is

N
(6) = _logpy, (wi;0), (4.19)

where pi(z;;0) = Pr(G = k| X = z;;0).

We discuss in detail the two-class case, since the algorithms simplify
considerably. It is convenient to code the two-class g; via a 0/1 response y;,
where y; = 1 when g; = 1, and y; = 0 when g; = 2. Let p1(x;0) = p(z;0),
and po(z;0) =1 — p(x;0). The log-likelihood can be written

N

() = Y {witogn(eis )+ (1 - yi)log(1 — p(as; 5))}

=1

|
.MZ

i=1

Here 8 = {f10, 51}, and we assume that the vector of inputs z; includes
the constant term 1 to accommodate the intercept.
To maximize the log-likelihood, we set its derivatives to zero. These score

equations are
N

=D iy — p(wi; ) = 0, (4.21)

i=1

246
op
which are p+ 1 equations nonlinear in 3. Notice that since the first compo-
nent of x; is 1, the first score equation specifies that vazl yi = Zfil p(x; B);
the expected number of class ones matches the observed number (and hence
also class twos.)
To solve the score equations (4.21), we use the Newton—Raphson algo-
rithm, which requires the second-derivative or Hessian matrix

2 N
gﬁf}(@ = ;l‘iwiTp(xi; B = p(ws; B))- (4.22)

Starting with 3°, a single Newton update is

9*(B) ) 2L(B)

2507 7 (4.23)

Bnew _ 601d o (

where the derivatives are evaluated at 3°4.
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It is convenient to write the score and Hessian in matrix notation. Let
y denote the vector of y; values, X the N x (p + 1) matrix of x; values,
p the vector of fitted probabilities with ith element p(x;; 5°'4) and W a
N x N diagonal matrix of weights with ith diagonal element p(z;; 3°'9)(1 —
p(xi; 8°'Y)). Then we have

ot(B)

S5 = X'o-p) (424
B _ T
9505 -X*WX (4.25)
The Newton step is thus
,BHCW _ ﬁold + (XTWX)_le(y _ p)
— (XTWX)'X"W (XM + Wl (y — p))
= (XTWX)"'X"Waz. (4.26)

In the second and third line we have re-expressed the Newton step as a
weighted least squares step, with the response

z2=XpM + Wy —p), (4.27)

sometimes known as the adjusted response. These equations get solved re-
peatedly, since at each iteration p changes, and hence so does W and z.
This algorithm is referred to as iteratively reweighted least squares or IRLS,
since each iteration solves the weighted least squares problem:

£V« arg mﬁin(z —XB3) "W (z — Xp). (4.28)

It seems that 8 = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does
converge, since the log-likelihood is concave, but overshooting can occur.
In the rare cases that the log-likelihood decreases, step size halving will
guarantee convergence.

For the multiclass case (K > 3) the Newton algorithm can also be ex-
pressed as an iteratively reweighted least squares algorithm, but with a
vector of K —1 responses and a nondiagonal weight matrix per observation.
The latter precludes any simplified algorithms, and in this case it is numer-
ically more convenient to work with the expanded vector 6 directly (Ex-
ercise 4.4). Alternatively coordinate-descent methods (Section 3.8.6) can
be used to maximize the log-likelihood efficiently. The R package glmnet
(Friedman et al., 2010) can fit very large logistic regression problems ef-
ficiently, both in N and p. Although designed to fit regularized models,
options allow for unregularized fits.

Logistic regression models are used mostly as a data analysis and infer-
ence tool, where the goal is to understand the role of the input variables
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TABLE 4.2. Results from a logistic regression fit to the South African heart
disease data.

Coefficient  Std. Error Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034

1d1 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity -0.035 0.029  —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

in explaining the outcome. Typically many models are fit in a search for a
parsimonious model involving a subset of the variables, possibly with some
interactions terms. The following example illustrates some of the issues
involved.

4.4.2  Ezample: South African Heart Disease

Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried
out in three rural areas of the Western Cape, South Africa (Rousseauw et
al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data represent
white males between 15 and 64, and the response variable is the presence or
absence of myocardial infarction (MI) at the time of the survey (the overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).

We fit a logistic-regression model by maximum likelihood, giving the
results shown in Table 4.2. This summary includes Z scores for each of the
coefficients in the model (coefficients divided by their standard errors); a
nonsignificant Z score suggests a coefficient can be dropped from the model.
Each of these correspond formally to a test of the null hypothesis that the
coefficient in question is zero, while all the others are not (also known as
the Wald test). A Z score greater than approximately 2 in absolute value
is significant at the 5% level.

There are some surprises in this table of coefficients, which must be in-
terpreted with caution. Systolic blood pressure (sbp) is not significant! Nor
is obesity, and its sign is negative. This confusion is a result of the corre-
lation between the set of predictors. On their own, both sbp and obesity
are significant, and with positive sign. However, in the presence of many
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FIGURE 4.12. A scatterplot matriz of the South African heart disease data.
Each plot shows a pair of risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart disease (famhist) is binary
(yes or no).
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TABLE 4.3. Results from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1d1 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52

other correlated variables, they are no longer needed (and can even get a
negative sign).

At this stage the analyst might do some model selection; find a subset
of the variables that are sufficient for explaining their joint effect on the
prevalence of chd. One way to proceed by is to drop the least significant co-
efficient, and refit the model. This is done repeatedly until no further terms
can be dropped from the model. This gave the model shown in Table 4.3.

A better but more time-consuming strategy is to refit each of the models
with one variable removed, and then perform an analysis of deviance to
decide which variable to exclude. The residual deviance of a fitted model
is minus twice its log-likelihood, and the deviance between two models is
the difference of their individual residual deviances (in analogy to sums-of-
squares). This strategy gave the same final model as above.

How does one interpret a coefficient of 0.081 (Std. Error = 0.026) for
tobacco, for example? Tobacco is measured in total lifetime usage in kilo-
grams, with a median of 1.0kg for the controls and 4.1kg for the cases. Thus
an increase of 1kg in lifetime tobacco usage accounts for an increase in the
odds of coronary heart disease of exp(0.081) = 1.084 or 8.4%. Incorporat-
ing the standard error we get an approximate 95% confidence interval of
exp(0.081 4+ 2 x 0.026) = (1.03,1.14).

We return to these data in Chapter 5, where we see that some of the
variables have nonlinear effects, and when modeled appropriately, are not
excluded from the model.

4.4.3  Quadratic Approzimations and Inference

The maximum-likelihood parameter estimates B satisfy a self-consistency
relationship: they are the coefficients of a weighted least squares fit, where
the responses are

s, Wi—pi)
zi=al B+ S p)’ (4.29)
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and the weights are w; = p;(1—p;), both depending on 3 itself. Apart from
providing a convenient algorithm, this connection with least squares has
more to offer:

e The weighted residual sum-of-squares is the familiar Pearson chi-
square statistic

N ~
3 (i —Pi)* (4.30)

— pi(1—pi)’
a quadratic approximation to the deviance.

e Asymptotic likelihood theory says that if the model is correct, then
B is consistent (i.e., converges to the true 3).

e A central limit theorem then shows that the distribution of B con-
verges to N (3, (XTWX)~1). This and other asymptotics can be de-
rived directly from the weighted least squares fit by mimicking normal
theory inference.

e Model building can be costly for logistic regression models, because
each model fitted requires iteration. Popular shortcuts are the Rao
score test which tests for inclusion of a term, and the Wald test which
can be used to test for exclusion of a term. Neither of these require
iterative fitting, and are based on the maximum-likelihood fit of the
current model. It turns out that both of these amount to adding
or dropping a term from the weighted least squares fit, using the
same weights. Such computations can be done efficiently, without
recomputing the entire weighted least squares fit.

Software implementations can take advantage of these connections. For
example, the generalized linear modeling software in R (which includes lo-
gistic regression as part of the binomial family of models) exploits them
fully. GLM (generalized linear model) objects can be treated as linear model
objects, and all the tools available for linear models can be applied auto-
matically.

4.4.4 Ly Regularized Logistic Regression

The L; penalty used in the lasso (Section 3.4.2) can be used for variable
selection and shrinkage with any linear regression model. For logistic re-
gression, we would maximize a penalized version of (4.20):

N

P
max 3 " [ui(60 + 87) —log(1+ 2 7)] A gt (431)
’ i=1 j=1

As with the lasso, we typically do not penalize the intercept term, and stan-
dardize the predictors for the penalty to be meaningful. Criterion (4.31) is
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concave, and a solution can be found using nonlinear programming meth-
ods (Koh et al., 2007, for example). Alternatively, using the same quadratic
approximations that were used in the Newton algorithm in Section 4.4.1,
we can solve (4.31) by repeated application of a weighted lasso algorithm.
Interestingly, the score equations [see (4.24)] for the variables with non-zero
coefficients have the form
xj (y —p) = A-sign(8;), (4.32)

which generalizes (3.58) in Section 3.4.4; the active variables are tied in
their generalized correlation with the residuals.

Path algorithms such as LAR for lasso are more difficult, because the
coefficient profiles are piecewise smooth rather than linear. Nevertheless,
progress can be made using quadratic approximations.

1 2 4 5 6 7
© [ age
S 7 M" pro
— famhist
—~ <
< " haceo
n
= /]
] Fi ’
‘O [SYI —
= ©° f o
i
] ***; o M puwt [~ SDP
o | K - e — alcohol
= \
% — obesity
T T T T
0.0 0.5 1.0 15 2.0

1B

FIGURE 4.13. Ly regularized logistic regression coefficients for the South
African heart disease data, plotted as a function of the L1 norm. The variables
were all standardized to have unit variance. The profiles are computed exactly at
each of the plotted points.

Figure 4.13 shows the L; regularization path for the South African
heart disease data of Section 4.4.2. This was produced using the R package
glmpath (Park and Hastie, 2007), which uses predictor—corrector methods
of convex optimization to identify the exact values of \ at which the active
set of non-zero coefficients changes (vertical lines in the figure). Here the
profiles look almost linear; in other examples the curvature will be more
visible.

Coordinate descent methods (Section 3.8.6) are very efficient for comput-
ing the coefficient profiles on a grid of values for A\. The R package glmnet
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(Friedman et al., 2010) can fit coefficient paths for very large logistic re-
gression problems efficiently (large in N or p). Their algorithms can exploit
sparsity in the predictor matrix X, which allows for even larger problems.
See Section 18.4 for more details, and a discussion of Li-regularized multi-
nomial models.

4.4.5 Logistic Regression or LDA?

In Section 4.3 we find that the log-posterior odds between class k and K
are linear functions of = (4.9):

Pr(G =k|X =x) a1 -
1 = log— — = > _
C PG =K|X =) 08 = = 5 (et i) E7H (i — pc)
-HL‘TE_l(’uk — MK)
= ko +afa. (4.33)

This linearity is a consequence of the Gaussian assumption for the class
densities, as well as the assumption of a common covariance matrix. The
linear logistic model (4.17) by construction has linear logits:

Pr(G =k|X =x)

o8 B G =KX =2

= Bro + Tz (4.34)

It seems that the models are the same. Although they have exactly the same
form, the difference lies in the way the linear coefficients are estimated. The
logistic regression model is more general, in that it makes less assumptions.
We can write the joint density of X and G as

Pr(X,G = k) = Pr(X)Pr(G = k| X), (4.35)

where Pr(X) denotes the marginal density of the inputs X. For both LDA
and logistic regression, the second term on the right has the logit-linear
form
eBro +Bf

1+ Zf:_ll eBeo+Bl =’
where we have again arbitrarily chosen the last class as the reference.

The logistic regression model leaves the marginal density of X as an arbi-
trary density function Pr(X), and fits the parameters of Pr(G|X) by max-
imizing the conditional likelihood—the multinomial likelihood with proba-
bilities the Pr(G = k|X). Although Pr(X) is totally ignored, we can think
of this marginal density as being estimated in a fully nonparametric and
unrestricted fashion, using the empirical distribution function which places
mass 1/N at each observation.

With LDA we fit the parameters by maximizing the full log-likelihood,
based on the joint density

Pr(X,G = k) = ¢(X; pugs, ), (4.37)

Pr(G=klX =2)= (4.36)
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where ¢ is the Gaussian density function. Standard normal theory leads
easily to the estimates ﬂk,i, and 7 given in Section 4.3. Since the linear
parameters of the logistic form (4.33) are functions of the Gaussian param-
eters, we get their maximum-likelihood estimates by plugging in the corre-
sponding estimates. However, unlike in the conditional case, the marginal
density Pr(X) does play a role here. It is a mixture density

K
Pr(X) =) md(X; ., ), (4.38)
k=1

which also involves the parameters.

What role can this additional component/restriction play? By relying
on the additional model assumptions, we have more information about the
parameters, and hence can estimate them more efficiently (lower variance).
If in fact the true fi(x) are Gaussian, then in the worst case ignoring this
marginal part of the likelihood constitutes a loss of efficiency of about 30%
asymptotically in the error rate (Efron, 1975). Paraphrasing: with 30%
more data, the conditional likelihood will do as well.

For example, observations far from the decision boundary (which are
down-weighted by logistic regression) play a role in estimating the common
covariance matrix. This is not all good news, because it also means that
LDA is not robust to gross outliers.

From the mixture formulation, it is clear that even observations without
class labels have information about the parameters. Often it is expensive
to generate class labels, but unclassified observations come cheaply. By
relying on strong model assumptions, such as here, we can use both types
of information.

The marginal likelihood can be thought of as a regularizer, requiring
in some sense that class densities be wvisible from this marginal view. For
example, if the data in a two-class logistic regression model can be per-
fectly separated by a hyperplane, the maximum likelihood estimates of the
parameters are undefined (i.e., infinite; see Exercise 4.5). The LDA coeffi-
cients for the same data will be well defined, since the marginal likelihood
will not permit these degeneracies.

In practice these assumptions are never correct, and often some of the
components of X are qualitative variables. It is generally felt that logistic
regression is a safer, more robust bet than the LDA model, relying on fewer
assumptions. It is our experience that the models give very similar results,
even when LDA is used inappropriately, such as with qualitative predictors.
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FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line is the least squares solution, which misclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
learning algorithm with different random starts.

4.5 Separating Hyperplanes

We have seen that linear discriminant analysis and logistic regression both
estimate linear decision boundaries in similar but slightly different ways.
For the rest of this chapter we describe separating hyperplane classifiers.
These procedures construct linear decision boundaries that explicitly try
to separate the data into different classes as well as possible. They provide
the basis for support vector classifiers, discussed in Chapter 12. The math-
ematical level of this section is somewhat higher than that of the previous
sections.

Figure 4.14 shows 20 data points in two classes in IR%. These data can be
separated by a linear boundary. Included in the figure (blue lines) are two
of the infinitely many possible separating hyperplanes. The orange line is
the least squares solution to the problem, obtained by regressing the —1/1
response Y on X (with intercept); the line is given by

{z: Bo + Prz1 + Pz = 0} (4.39)

This least squares solution does not do a perfect job in separating the
points, and makes one error. This is the same boundary found by LDA,
in light of its equivalence with linear regression in the two-class case (Sec-
tion 4.3 and Exercise 4.2).

Classifiers such as (4.39), that compute a linear combination of the input
features and return the sign, were called perceptrons in the engineering liter-
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FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(z) = By + BTz = 0; since we are in IR? this is a line.

Here we list some properties:

1. For any two points #; and x5 lying in L, 87 (21 — 22) = 0, and hence
B* = B/|18]| is the vector normal to the surface of L.

2. For any point z¢ in L, T2q = —fp.
3. The signed distance of any point = to L is given by

Lo
1

= e’ )

ﬁ*T(J? _ xO) _

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If
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a response y; = 1 is misclassified, then 2 3 + 8y < 0, and the opposite for

a misclassified response with y; = —1. The goal is to minimize
D(B,50) =— > yila! B+ Bo), (4.41)
ieM

where M indexes the set of misclassified points. The quantity is non-
negative and proportional to the distance of the misclassified points to
the decision boundary defined by 7 + By = 0. The gradient (assuming
M is fixed) is given by

D(8, Bo)

D(ﬂa /60) _ .
=i o = GXA; i (4.43)

The algorithm in fact uses stochastic gradient descent to minimize this
piecewise linear criterion. This means that rather than computing the sum
of the gradient contributions of each observation followed by a step in the
negative gradient direction, a step is taken after each observation is visited.
Hence the misclassified observations are visited in some sequence, and the
parameters 8 are updated via

(é) - (ﬁi) e (yyx) : (4.44)

Here p is the learning rate, which in this case can be taken to be 1 without
loss in generality. If the classes are linearly separable, it can be shown that
the algorithm converges to a separating hyperplane in a finite number of
steps (Exercise 4.6). Figure 4.14 shows two solutions to a toy problem, each
started at a different random guess.

There are a number of problems with this algorithm, summarized in
Ripley (1996):

e When the data are separable, there are many solutions, and which
one is found depends on the starting values.

e The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.

e When the data are not separable, the algorithm will not converge,
and cycles develop. The cycles can be long and therefore hard to
detect.

The second problem can often be eliminated by seeking a hyperplane not
in the original space, but in a much enlarged space obtained by creating
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many basis-function transformations of the original variables. This is anal-
ogous to driving the residuals in a polynomial regression problem down
to zero by making the degree sufficiently large. Perfect separation cannot
always be achieved: for example, if observations from two different classes
share the same input. It may not be desirable either, since the resulting
model is likely to be overfit and will not generalize well. We return to this
point at the end of the next section.

A rather elegant solution to the first problem is to add additional con-
straints to the separating hyperplane.

Clt]

4.5.2  Optimal Separating Hyperplanes ik

The optimal separating hyperplane separates the two classes and maximizes
the distance to the closest point from either class (Vapnik, 1996). Not only
does this provide a unique solution to the separating hyperplane problem,
but by maximizing the margin between the two classes on the training data,
this leads to better classification performance on test data.

We need to generalize criterion (4.41). Consider the optimization problem

max M
8.80.l16l1=1 (4.45)
subject to y;(zX B+ Bo) > M, i=1,...,N.

The set of conditions ensure that all the points are at least a signed
distance M from the decision boundary defined by 8 and 5y, and we seek
the largest such M and associated parameters. We can get rid of the ||5]| =
1 constraint by replacing the conditions with

”T?”yi(%rﬁ + Bo) > M, (4.46)

(which redefines ) or equivalently

yi(ay B+ Bo) = M||B]. (4.47)

Since for any g and [, satisfying these inequalities, any positively scaled
multiple satisfies them too, we can arbitrarily set ||5]| = 1/M. Thus (4.45)
is equivalent to

1
min = | 5] |?
B.Bo 2 (4.48)

subject to y; (2l B+ o) > 1,i=1,...,N.

In light of (4.40), the constraints define an empty slab or margin around the
linear decision boundary of thickness 1/||3||. Hence we choose 8 and fj to
maximize its thickness. This is a convex optimization problem (quadratic
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criterion with linear inequality constraints). The Lagrange (primal) func-
tion, to be minimized w.r.t. 8 and [y, is

N
Lo = SIBIP =Y auluel 5 + o) 11 (4.49)
=1

Setting the derivatives to zero, we obtain:
N
i=1

N
0 = > aw, (4.51)
i=1

and substituting these in (4.49) we obtain the so-called Wolfe dual

N N N

1
Lp = Z a5 Z Z G ORYIYRT] T
=1 =1 k=1
N
subject to a; > 0 and Zaiyi =0. (4.52)
i=1

The solution is obtained by maximizing Lp in the positive orthant, a sim-
pler convex optimization problem, for which standard software can be used.
In addition the solution must satisfy the Karush—Kuhn—Tucker conditions,
which include (4.50), (4.51), (4.52) and

ailyi(x] B+ Bo) — 1] = 0 Vi (4.53)
From these we can see that

e if a; > 0, then y;(z7 8 + By) = 1, or in other words, z; is on the
boundary of the slab;

o if y;(z' B+ By) > 1, ; is not on the boundary of the slab, and a; = 0.

From (4.50) we see that the solution vector f is defined in terms of a linear
combination of the support points x;—those points defined to be on the
boundary of the slab via a; > 0. Figure 4.16 shows the optimal separating
hyperplane for our toy example; there are three support points. Likewise,
Bo is obtained by solving (4.53) for any of the support points.

The optimal separating hyperplane produces a function f (x) = :ETB + BO
for classifying new observations:

G(x) = signf(z). (4.54)

Although none of the training observations fall in the margin (by con-
struction), this will not necessarily be the case for test observations. The
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FIGURE 4.16. The same data as in Figure 4.14. The shaded region delineates
the maximum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).

intuition is that a large margin on the training data will lead to good
separation on the test data.

The description of the solution in terms of support points seems to sug-
gest that the optimal hyperplane focuses more on the points that count,
and is more robust to model misspecification. The LDA solution, on the
other hand, depends on all of the data, even points far away from the de-
cision boundary. Note, however, that the identification of these support
points required the use of all the data. Of course, if the classes are really
Gaussian, then LDA is optimal, and separating hyperplanes will pay a price
for focusing on the (noisier) data at the boundaries of the classes.

Included in Figure 4.16 is the logistic regression solution to this prob-
lem, fit by maximum likelihood. Both solutions are similar in this case.
When a separating hyperplane exists, logistic regression will always find
it, since the log-likelihood can be driven to 0 in this case (Exercise 4.5).
The logistic regression solution shares some other qualitative features with
the separating hyperplane solution. The coefficient vector is defined by a
weighted least squares fit of a zero-mean linearized response on the input
features, and the weights are larger for points near the decision boundary
than for those further away.

When the data are not separable, there will be no feasible solution to
this problem, and an alternative formulation is needed. Again one can en-
large the space using basis transformations, but this can lead to artificial
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separation through over-fitting. In Chapter 12 we discuss a more attractive
alternative known as the support vector machine, which allows for overlap,
but minimizes a measure of the extent of this overlap.

Bibliographic Notes

Good general texts on classification include Duda et al. (2000), Hand
(1981), McLachlan (1992) and Ripley (1996). Mardia et al. (1979) have
a concise discussion of linear discriminant analysis. Michie et al. (1994)
compare a large number of popular classifiers on benchmark datasets. Lin-
ear separating hyperplanes are discussed in Vapnik (1996). Our account of
the perceptron learning algorithm follows Ripley (1996).

Exercises

Ex. 4.1 Show how to solve the generalized eigenvalue problem maxa’ Ba
subject to a”’ Wa = 1 by transforming to a standard eigenvalue problem.

Ex. 4.2 Suppose we have features x € IR, a two-class response, with class
sizes N1, No, and the target coded as —N/Ny, N/Ns.

(a) Show that the LDA rule classifies to class 2 if

-1

A1 ~ 1 . - R N
(fig — f11) > §(M2 + 11)"2 (2 — fir) — log(N2/N1),

2T
and class 1 otherwise.

(b) Consider minimization of the least squares criterion

N

> (i — Bo - B)*. (4.55)

i=1
Show that the solution B satisfies
(V= 2)%+ N%5] 6 = N(pa — jun) (4.56)

(after simplification), where Xp = NJ{,JXQ (fig — fi1)(fiz — 11

)E.
(¢) Hence show that 3p /4 is in the direction (fia — fi1) and thus

BocS (ia — ). (4.57)

Therefore the least-squares regression coefficient is identical to the
LDA coefficient, up to a scalar multiple.
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(d) Show that this result holds for any (distinct) coding of the two classes.

(¢) Find the solution By (up to the same scalar multiple as in (c), and
hence the predicted value f (z) = Bo + 2T 3. Consider the following
rule: classify to class 2 if f(z) > 0 and class 1 otherwise. Show this is
not the same as the LDA rule unless the classes have equal numbers
of observations.

(Fisher, 1936; Ripley, 1996)

Ex. 4.3 Suppose we transform the original predictors X to Y via linear
regression. In detail, let Y = X(X7X)"!X7Y = XB, where Y is the
indicator response matrix. Similarly for any input = € IR?, we get a trans-
formed vector § = BTz € R¥. Show that LDA using Y is identical to
LDA in the original space.

Ex. 4.4 Counsider the multilogit model with K classes (4.17). Let 38 be the
(p 4+ 1)(K — 1)-vector consisting of all the coefficients. Define a suitably
enlarged version of the input vector x to accommodate this vectorized co-
efficient matrix. Derive the Newton-Raphson algorithm for maximizing the
multinomial log-likelihood, and describe how you would implement this
algorithm.

Ex. 4.5 Consider a two-class logistic regression problem with z € IR. Char-
acterize the maximum-likelihood estimates of the slope and intercept pa-
rameter if the sample x; for the two classes are separated by a point g € IR.
Generalize this result to (a) x € IRP (see Figure 4.16), and (b) more than
two classes.

Ex. 4.6 Suppose we have N points z; in IR? in general position, with class
labels y; € {—1, 1}. Prove that the perceptron learning algorithm converges
to a separating hyperplane in a finite number of steps:

(a) Denote a hyperplane by f(x) = ¥z + Sy = 0, or in more compact
notation BTz* = 0, where 2* = (x,1) and 8 = (31, 8). Let z; =
x}/||zf]|. Show that separability implies the existence of a Ssep such

that BT 2 > 1 Vi

sep

(b) Given a current 8,14, the perceptron algorithm identifies a point z; that
is misclassified, and produces the update Bhew < Bold + ¥izi. Show
that ||Bnew — Bsep| 12 < |Boia — Bsep| |2—1, and hence that the algorithm
converges to a separating hyperplane in no more than ||Bstart — Bsep ||
steps (Ripley, 1996).

Ex. 4.7 Consider the criterion

“(B,Bo) = Zyz T8+ Bo), (4.58)
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a generalization of (4.41) where we sum over all the observations. Consider
minimizing D* subject to ||3|| = 1. Describe this criterion in words. Does
it solve the optimal separating hyperplane problem?

Ex. 4.8 Consider the multivariate Gaussian model X|G = k ~ N(ug, 2),
with the additional restriction that rank{u;}¥ = L < max(K — 1,p).
Derive the constrained MLEs for the pj and 3. Show that the Bayes clas-
sification rule is equivalent to classifying in the reduced subspace computed
by LDA (Hastie and Tibshirani, 1996b).

Ex. 4.9 Write a computer program to perform a quadratic discriminant
analysis by fitting a separate Gaussian model per class. Try it out on the
vowel data, and compute the misclassification error for the test data. The
data can be found in the book website www-stat.stanford.edu/ElemStatLearn.
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5

Basis Expansions and Regularization

5.1 Introduction

We have already made use of models linear in the input features, both for
regression and classification. Linear regression, linear discriminant analysis,
logistic regression and separating hyperplanes all rely on a linear model.
It is extremely unlikely that the true function f(X) is actually linear in
X. In regression problems, f(X) = E(Y|X) will typically be nonlinear and
nonadditive in X, and representing f(X) by a linear model is usually a con-
venient, and sometimes a necessary, approximation. Convenient because a
linear model is easy to interpret, and is the first-order Taylor approxima-
tion to f(X). Sometimes necessary, because with N small and/or p large,
a linear model might be all we are able to fit to the data without overfit-
ting. Likewise in classification, a linear, Bayes-optimal decision boundary
implies that some monotone transformation of Pr(Y = 1|X) is linear in X.
This is inevitably an approximation.

In this chapter and the next we discuss popular methods for moving
beyond linearity. The core idea in this chapter is to augment /replace the
vector of inputs X with additional variables, which are transformations of
X, and then use linear models in this new space of derived input features.

Denote by h,(X) : R? — IR the mth transformation of X, m =
1,..., M. We then model

F(X) =) Bmhm(X), (5.1)

1=
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a linear basis expansion in X. The beauty of this approach is that once the
basis functions h,, have been determined, the models are linear in these
new variables, and the fitting proceeds as before.

Some simple and widely used examples of the h,, are the following:

e (X)) =X,,, m=1,...,precovers the original linear model.

o i (X) = X7 or hy(X) = X; X, allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the de-
gree of the polynomial. A full quadratic model in p variables requires
O(p?) square and cross-product terms, or more generally O(p?) for a
degree-d polynomial.

e 1, (X) =log(X;), \/Xj,... permits other nonlinear transformations
of single inputs. More generally one can use similar functions involv-
ing several inputs, such as h,,(X) = || X]|.

o h(X) = I(Ly,, < Xy <Up,), an indicator for a region of Xj. By
breaking the range of X up into M} such nonoverlapping regions
results in a model with a piecewise constant contribution for Xj.

Sometimes the problem at hand will call for particular basis functions h,,,
such as logarithms or power functions. More often, however, we use the basis
expansions as a device to achieve more flexible representations for f(X).
Polynomials are an example of the latter, although they are limited by
their global nature—tweaking the coefficients to achieve a functional form
in one region can cause the function to flap about madly in remote regions.
In this chapter we consider more useful families of piecewise-polynomials
and splines that allow for local polynomial representations. We also discuss
the wavelet bases, especially useful for modeling signals and images. These
methods produce a dictionary D consisting of typically a very large number
|D| of basis functions, far more than we can afford to fit to our data. Along
with the dictionary we require a method for controlling the complexity
of our model, using basis functions from the dictionary. There are three
common approaches:

e Restriction methods, where we decide before-hand to limit the class
of functions. Additivity is an example, where we assume that our
model has the form

fX) = > fHX)

M

" Bimhim(X5). (5.2)
j=1m=1
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The size of the model is limited by the number of basis functions M;
used for each component function f;.

e Selection methods, which adaptively scan the dictionary and include
only those basis functions h,, that contribute significantly to the fit of
the model. Here the variable selection techniques discussed in Chap-
ter 3 are useful. The stagewise greedy approaches such as CART,
MARS and boosting fall into this category as well.

e Regularization methods where we use the entire dictionary but re-
strict the coefficients. Ridge regression is a simple example of a regu-
larization approach, while the lasso is both a regularization and selec-
tion method. Here we discuss these and more sophisticated methods
for regularization.

5.2 Piecewise Polynomials and Splines

We assume until Section 5.7 that X is one-dimensional. A piecewise poly-
nomial function f(X) is obtained by dividing the domain of X into contigu-
ous intervals, and representing f by a separate polynomial in each interval.
Figure 5.1 shows two simple piecewise polynomials. The first is piecewise
constant, with three basis functions:

hl(X)ZI(X<€1), hQ(X):I(£1SX<§2), hg(X)ZI(fng)

Since these are positive over disjoint regions, the least squares estimate of
the model f(X) = 21:1 Bmhm(X) amounts to By = Yom, the mean of Y
in the mth region.

The top right panel shows a piecewise linear fit. Three additional basis
functions are needed: h,,13 = hy, (X)X, m = 1,...,3. Except in special
cases, we would typically prefer the third panel, which is also piecewise
linear, but restricted to be continuous at the two knots. These continu-
ity restrictions lead to linear constraints on the parameters; for example,
(&) = f(&) implies that B + &1 84 = B2 + &1 B5. In this case, since there
are two restrictions, we expect to get back two parameters, leaving four free
parameters.

A more direct way to proceed in this case is to use a basis that incorpo-
rates the constraints:

h(X) =1 h(X)=X, h(X)=(X-&)+, h(X)=X-&)y,

where ¢4 denotes the positive part. The function hg is shown in the lower
right panel of Figure 5.1. We often prefer smoother functions, and these
can be achieved by increasing the order of the local polynomial. Figure 5.2
shows a series of piecewise-cubic polynomials fit to the same data, with
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Piecewise Constant Piecewise Linear

&1 &2 & &

Continuous Piecewise Linear Piecewise-linear Basis Function

T T T T

&1 &2 & &

FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken wvertical lines indicate the positions of the two knots
&1 and &. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise—
linear basis function, h3(X) = (X — &)+, continuous at &1. The black points
indicate the sample evaluations hs(xz;), i =1,...,N.
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Piecewise Cubic Polynomials

Discontinuous Continuous
%
o
&1 &2 & &
Continuous First Derivative Continuous Second Derivative
, 2go % , 2eo0 %
e 8
o *® o [e] *® o
o o fo o o G £ o
o o
&1 ) &1 &2

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at & and &o:

hi(X) =1, h3(X)=X? hs(X)=(X—-¢&)3,

5 5 (5.3)
ha(X) =X, ha(X)=X°, he(X)=(X—-&)7.

There are six basis functions corresponding to a six-dimensional linear space

of functions. A quick check confirms the parameter count: (3 regions)x (4

parameters per region) —(2 knots)x (3 constraints per knot)= 6.
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More generally, an order-M spline with knots §;, j = 1,...,K is a
piecewise-polynomial of order M, and has continuous derivatives up to
order M — 2. A cubic spline has M = 4. In fact the piecewise-constant
function in Figure 5.1 is an order-1 spline, while the continuous piece-
wise linear function is an order-2 spline. Likewise the general form for the
truncated-power basis set would be

hi(X) = X7 j=1,...,M,
hve(X) = (X =&Y e=1,.. K.

It is claimed that cubic splines are the lowest-order spline for which the
knot-discontinuity is not visible to the human eye. There is seldom any
good reason to go beyond cubic-splines, unless one is interested in smooth
derivatives. In practice the most widely used orders are M = 1,2 and 4.

These fixed-knot splines are also known as regression splines. One needs
to select the order of the spline, the number of knots and their placement.
One simple approach is to parameterize a family of splines by the number
of basis functions or degrees of freedom, and have the observations z; de-
termine the positions of the knots. For example, the expression bs (x,df=7)
in R generates a basis matrix of cubic-spline functions evaluated at the IV
observations in x, with the 7—3 = 4! interior knots at the appropriate per-
centiles of x (20, 40, 60 and 80th.) One can be more explicit, however; bs (x,
degree=1, knots = c(0.2, 0.4, 0.6)) generates a basis for linear splines,
with three interior knots, and returns an N x 4 matrix.

Since the space of spline functions of a particular order and knot sequence
is a vector space, there are many equivalent bases for representing them
(just as there are for ordinary polynomials.) While the truncated power
basis is conceptually simple, it is not too attractive numerically: powers of
large numbers can lead to severe rounding problems. The B-spline basis,
described in the Appendix to this chapter, allows for efficient computations
even when the number of knots K is large.

5.2.1 Natural Cubic Splines

We know that the behavior of polynomials fit to data tends to be erratic
near the boundaries, and extrapolation can be dangerous. These problems
are exacerbated with splines. The polynomials fit beyond the boundary
knots behave even more wildly than the corresponding global polynomials
in that region. This can be conveniently summarized in terms of the point-
wise variance of spline functions fit by least squares (see the example in the
next section for details on these variance calculations). Figure 5.3 compares

LA cubic spline with four knots is eight-dimensional. The bs () function omits by
default the constant term in the basis, since terms like this are typically included with
other terms in the model.
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FIGURE 5.3. Pointwise variance curves for four different models, with X con-
sisting of 50 points drawn at random from U0, 1], and an assumed error model
with constant variance. The linear and cubic polynomial fits have two and four
degrees of freedom, respectively, while the cubic spline and natural cubic spline
each have six degrees of freedom. The cubic spline has two knots at 0.33 and 0.66,
while the natural spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.

the pointwise variances for a variety of different models. The explosion of
the variance near the boundaries is clear, and inevitably is worst for cubic
splines.

A natural cubic spline adds additional constraints, namely that the func-
tion is linear beyond the boundary knots. This frees up four degrees of
freedom (two constraints each in both boundary regions), which can be
spent more profitably by sprinkling more knots in the interior region. This
tradeoff is illustrated in terms of variance in Figure 5.3. There will be a
price paid in bias near the boundaries, but assuming the function is lin-
ear near the boundaries (where we have less information anyway) is often
considered reasonable.

A natural cubic spline with K knots is represented by K basis functions.
One can start from a basis for cubic splines, and derive the reduced ba-
sis by imposing the boundary constraints. For example, starting from the
truncated power series basis described in Section 5.2, we arrive at (Exer-
cise 5.4):

Ni(X) =1, No(X) =X, Nipo(X) =dp(X) —dr1(X),  (54)
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where

(X —&)3 — (X —¢x)}
Ex — &k '

Each of these basis functions can be seen to have zero second and third

derivative for X > £k

di(X) = (5.5)

5.2.2  Ezample: South African Heart Disease (Continued)

In Section 4.4.2 we fit linear logistic regression models to the South African
heart disease data. Here we explore nonlinearities in the functions using
natural splines. The functional form of the model is

logit[Pr(chd|X)] = 0 + h1(X1)T 01 + ha(X2) 02 + - - + hp(X,) " 0, (5.6)

where each of the §; are vectors of coefficients multiplying their associated
vector of natural spline basis functions h;.

We use four natural spline bases for each term in the model. For example,
with X representing sbp, h1(X7) is a basis consisting of four basis func-
tions. This actually implies three rather than two interior knots (chosen at
uniform quantiles of sbp), plus two boundary knots at the extremes of the
data, since we exclude the constant term from each of the h;.

Since famhist is a two-level factor, it is coded by a simple binary or
dummy variable, and is associated with a single coefficient in the fit of the
model.

More compactly we can combine all p vectors of basis functions (and
the constant term) into one big vector h(X), and then the model is simply
h(X)T9, with total number of parameters df = 1 + Z§:1 df;, the sum of
the parameters in each component term. Each basis function is evaluated
at each of the N samples, resulting in a N x df basis matrix H. At this
point the model is like any other linear logistic model, and the algorithms
described in Section 4.4.1 apply.

We carried out a backward stepwise deletion process, dropping terms
from this model while preserving the group structure of each term, rather
than dropping one coefficient at a time. The AIC statistic (Section 7.5) was
used to drop terms, and all the terms remaining in the final model would
cause AIC to increase if deleted from the model (see Table 5.1). Figure 5.4
shows a plot of the final model selected by the stepwise regression. The
functions displayed are fj(Xj) = h; (Xj)Téj for each variable X;. The
covariance matrix Cov(f) = X is estimated by 3 = (HTWH)~!, where W
is the diagonal weight matrix from the logistic regression. Hence v;(X;) =
Var[f;(X;)] = hj(X;)T3;;h;(X;) is the pointwise variance function of f;,
where Cov(éj) = ﬁj j is the appropriate sub-matrix of 3. The shaded region
in each panel is defined by fj (X;) £ 2/v;(X;).

The AIC statistic is slightly more generous than the likelihood-ratio test
(deviance test). Both sbp and obesity are included in this model, while
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FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).
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TABLE 5.1. Final logistic regression model, after stepwise deletion of natural
splines terms. The column labeled “LRT” 1is the likelihood-ratio test statistic when
that term is deleted from the model, and is the change in deviance from the full
model (labeled “none”

Terms Df Deviance AIC LRT P-value
none 458.09 502.09

sbp 4 467.16  503.16 9.076 0.059
tobacco 4 470.48 506.48 12.387 0.015
1dl 4 472.39 508.39 14.307 0.006
famhist 1 479.44 521.44 21.356 0.000
obesity 4 466.24 502.24  8.147 0.086
age 4 481.86 517.86 23.768 0.000

they were not in the linear model. The figure explains why, since their
contributions are inherently nonlinear. These effects at first may come as
a surprise, but an explanation lies in the nature of the retrospective data.
These measurements were made sometime after the patients suffered a
heart attack, and in many cases they had already benefited from a healthier
diet and lifestyle, hence the apparent increase in risk at low values for
obesity and sbp. Table 5.1 shows a summary of the selected model.

5.2.3  Ezample: Phoneme Recognition

In this example we use splines to reduce flexibility rather than increase it;
the application comes under the general heading of functional modeling. In
the top panel of Figure 5.5 are displayed a sample of 15 log-periodograms
for each of the two phonemes “aa” and “ao” measured at 256 frequencies.
The goal is to use such data to classify a spoken phoneme. These two
phonemes were chosen because they are difficult to separate.

The input feature is a vector x of length 256, which we can think of as
a vector of evaluations of a function X (f) over a grid of frequencies f. In
reality there is a continuous analog signal which is a function of frequency,
and we have a sampled version of it.

The gray lines in the lower panel of Figure 5.5 show the coefficients of
a linear logistic regression model fit by maximum likelihood to a training
sample of 1000 drawn from the total of 695 “aa”s and 1022 “ao”s. The
coefficients are also plotted as a function of frequency, and in fact we can
think of the model in terms of its continuous counterpart

Pr(aalX)
P / X(H)B(F)df, (5.7)
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FIGURE 5.5. The top panel displays the log-periodogram as a function of fre-
quency for 15 examples each of the phonemes “aa” and “ao” sampled from a total
of 695 “aa”s and 1022 “ao”s. Each log-periodogram is measured at 256 uniformly
spaced frequencies. The lower panel shows the coefficients (as a function of fre-
quency) of a logistic regression fit to the data by mazimum likelihood, using the
256 log-periodogram values as inputs. The coefficients are restricted to be smooth
in the red curve, and are unrestricted in the jagged gray curve.
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which we approximate by

256 256
> X6 =D wibi. (5.8)

The coefficients compute a contrast functional, and will have appreciable
values in regions of frequency where the log-periodograms differ between
the two classes.

The gray curves are very rough. Since the input signals have fairly strong
positive autocorrelation, this results in negative autocorrelation in the co-
efficients. In addition the sample size effectively provides only four obser-
vations per coefficient.

Applications such as this permit a natural regularization. We force the
coefficients to vary smoothly as a function of frequency. The red curve in the
lower panel of Figure 5.5 shows such a smooth coeflicient curve fit to these
data. We see that the lower frequencies offer the most discriminatory power.
Not only does the smoothing allow easier interpretation of the contrast, it
also produces a more accurate classifier:

Raw | Regularized
Training error || 0.080 0.185
Test error 0.255 0.158

The smooth red curve was obtained through a very simple use of natural
cubic splines. We can represent the coefficient function as an expansion of
splines (f) = 2%21 R (f)0,,. In practice this means that 5 = HO where,
H is a p x M basis matrix of natural cubic splines, defined on the set of
frequencies. Here we used M = 12 basis functions, with knots uniformly
placed over the integers 1,2,...,256 representing the frequencies. Since
2T 8 = 2THH, we can simply replace the input features = by their filtered
versions x* = H”z, and fit 6 by linear logistic regression on the z*. The
red curve is thus B(f) = h(f)T6.

5.3 Filtering and Feature Extraction

In the previous example, we constructed a p x M basis matrix H, and then
transformed our features z into new features x* = H”z. These filtered
versions of the features were then used as inputs into a learning procedure:
in the previous example, this was linear logistic regression.

Preprocessing of high-dimensional features is a very general and pow-
erful method for improving the performance of a learning algorithm. The
preprocessing need not be linear as it was above, but can be a general
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(nonlinear) function of the form x* = g(z). The derived features x* can
then be used as inputs into any (linear or nonlinear) learning procedure.

For example, for signal or image recognition a popular approach is to first
transform the raw features via a wavelet transform z* = Hz (Section 5.9)
and then use the features z* as inputs into a neural network (Chapter 11).
Wavelets are effective in capturing discrete jumps or edges, and the neural
network is a powerful tool for constructing nonlinear functions of these
features for predicting the target variable. By using domain knowledge
to construct appropriate features, one can often improve upon a learning
method that has only the raw features x at its disposal.

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob-
lem completely by using a maximal set of knots. The complexity of the fit
is controlled by regularization. Consider the following problem: among all
functions f(x) with two continuous derivatives, find one that minimizes the
penalized residual sum of squares

N
RSS(f,\) = Z{y — fz)}? + )\/{f”(t)}zdt, (5.9)

where ) is a fixed smoothing parameter. The first term measures closeness
to the data, while the second term penalizes curvature in the function, and
A establishes a tradeoff between the two. T'wo special cases are:

A=0: f can be any function that interpolates the data.

A = oo : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that A € (0, 00)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an infinite-dimensional function space—
in fact, a Sobolev space of functions for which the second term is defined.
Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the unique
values of the z;, i = 1,..., N (Exercise 5.7). At face value it seems that
the family is still over-parametrized, since there are as many as N knots,
which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the linear fit.

Since the solution is a natural spline, we can write it as

fla) = 3" Ny(a)o,, (5.10)
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with \ =~ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the N;(z) are an N-dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(0,\) = (y — NO)T (y — NO) + 07 Qn0, (5.11)

where {N};; = Nj(z;) and {Qn};r = [ N/ (t)N}/(t)dt. The solution is
easily seen to be R
0= (NTN +\Qy) 'NTy, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by
N
fl@) = Y Nj(@)b;. (5.13)
j=1

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
are color coded by gender, and two separate curves were fit. This simple
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summary reinforces the evidence in the data that the growth spurt for
females precedes that for males by about two years. In both cases the
smoothing parameter A was approximately 0.00022; this choice is discussed
in the next section.

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how A is chosen for the smoothing spline. Later
in this chapter we describe automatic methods using techniques such as
cross-validation. In this section we discuss intuitive ways of prespecifying
the amount of smoothing.

A smoothing spline with prechosen \ is an example of a linear smoother
(as in linear operator). This is because the estimated parameters in (5.12)
are a linear combination of the y;. Denote by f the N-vector of fitted values

f(z;) at the training predictors z;. Then

f = N(N'N+AQy) 'NTy

Again the fit is linear in y, and the finite linear operator Sy is known as
the smoother matriz. One consequence of this linearity is that the recipe
for producing f from y does not depend on y itself; Sy depends only on
the x; and A.

Linear operators are familiar in more traditional least squares fitting as
well. Suppose B¢ is a N x M matrix of M cubic-spline basis functions
evaluated at the N training points z;, with knot sequence &, and M < N.
Then the vector of fitted spline values is given by

f = B:B{B¢) 'Bly
= Hy. (5.15)

Here the linear operator H¢ is a projection operator, also known as the hat
matrix in statistics. There are some important similarities and differences
between H¢ and Sj:

e Both are symmetric, positive semidefinite matrices.

e H.H, = H¢ (idempotent), while SyS, < Sy, meaning that the right-
hand side exceeds the left-hand side by a positive semidefinite matrix.
This is a consequence of the shrinking nature of Sy, which we discuss
further below.

e H; has rank M, while Sy has rank N.

The expression M = trace(H¢) gives the dimension of the projection space,
which is also the number of basis functions, and hence the number of pa-
rameters involved in the fit. By analogy we define the effective degrees of
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freedom of a smoothing spline to be
dfy = trace(Sy), (5.16)

the sum of the diagonal elements of Sy. This very useful definition allows
us a more intuitive way to parameterize the smoothing spline, and indeed
many other smoothers as well, in a consistent fashion. For example, in Fig-
ure 5.6 we specified dfy = 12 for each of the curves, and the corresponding
A = 0.00022 was derived numerically by solving trace(Sy) = 12. There are
many arguments supporting this definition of degrees of freedom, and we
cover some of them here.

Since Sy is symmetric (and positive semidefinite), it has a real eigen-
decomposition. Before we proceed, it is convenient to rewrite Sy in the
Reinsch form

Sy =T+ \K)™!, (5.17)

where K does not depend on A (Exercise 5.9). Since f = S,y solves

mfin(y — )T (y — f) + MTKF, (5.18)

K is known as the penalty matriz, and indeed a quadratic form in K has
a representation in terms of a weighted sum of squared (divided) second
differences. The eigen-decomposition of Sy is

N
S)\ = Zpk()\)ukuf (519)
k=1
with )
AN)= —— 2

and dj, the corresponding eigenvalue of K. Figure 5.7 (top) shows the re-
sults of applying a cubic smoothing spline to some air pollution data (128
observations). Two fits are given: a smoother fit corresponding to a larger
penalty A and a rougher fit for a smaller penalty. The lower panels repre-
sent the eigenvalues (lower left) and some eigenvectors (lower right) of the
corresponding smoother matrices. Some of the highlights of the eigenrep-
resentation are the following:

e The eigenvectors are not affected by changes in A\, and hence the whole
family of smoothing splines (for a particular sequence x) indexed by
A have the same eigenvectors.

e S,y = lecvzl uipr(A)(ug,y), and hence the smoothing spline oper-
ates by decomposing y w.r.t. the (complete) basis {uy}, and differ-
entially shrinking the contributions using px(\). This is to be con-
trasted with a basis-regression method, where the components are
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FIGURE 5.7. (Top:) Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve five and eleven effective degrees of freedom, defined
by dfy, = trace(Sx). (Lower left:) First 25 eigenvalues for the two smoothing-spline
matrices. The first two are exactly 1, and all are > 0. (Lower right:) Third to
sixth eigenvectors of the spline smoother matrices. In each case, uy is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5 df smoother).
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either left alone, or shrunk to zero—that is, a projection matrix such
as H¢ above has M eigenvalues equal to 1, and the rest are 0. For
this reason smoothing splines are referred to as shrinking smoothers,
while regression splines are projection smoothers (see Figure 3.17 on
page 80).

e The sequence of uy, ordered by decreasing p (), appear to increase
in complexity. Indeed, they have the zero-crossing behavior of polyno-
mials of increasing degree. Since Syuy = pr(A)ug, we see how each of
the eigenvectors themselves are shrunk by the smoothing spline: the
higher the complexity, the more they are shrunk. If the domain of X
is periodic, then the uy are sines and cosines at different frequencies.

e The first two eigenvalues are always one, and they correspond to the
two-dimensional eigenspace of functions linear in a (Exercise 5.11),
which are never shrunk.

e The eigenvalues pi(A) = 1/(1 4+ Ady) are an inverse function of the
eigenvalues d; of the penalty matrix K, moderated by A; A controls
the rate at which the py () decrease to zero. dy = dy = 0 and again
linear functions are not penalized.

e One can reparametrize the smoothing spline using the basis vectors
uy, (the Demmler—Reinsch basis). In this case the smoothing spline
solves

min ||y — U6|> + 0" D9, (5.21)

where U has columns u; and D is a diagonal matrix with elements
dy,.

e dfy = trace(S,) = E,]Ll pr(A). For projection smoothers, all the
eigenvalues are 1, each one corresponding to a dimension of the pro-
jection subspace.

Figure 5.8 depicts a smoothing spline matrix, with the rows ordered with
z. The banded nature of this representation suggests that a smoothing
spline is a local fitting method, much like the locally weighted regression
procedures in Chapter 6. The right panel shows in detail selected rows of
S, which we call the equivalent kernels. As A — 0, dfy — N, and Sy — I,
the N-dimensional identity matrix. As A — oo, dfy, — 2, and S — H, the
hat matrix for linear regression on x.

5.5 Automatic Selection of the Smoothing
Parameters

The smoothing parameters for regression splines encompass the degree of
the splines, and the number and placement of the knots. For smoothing
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FIGURE 5.8. The smoother matrix for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
ing function in detail for the indicated rows.
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splines, we have only the penalty parameter A to select, since the knots are
at all the unique training X'’s, and cubic degree is almost always used in
practice.

Selecting the placement and number of knots for regression splines can be
a combinatorially complex task, unless some simplifications are enforced.
The MARS procedure in Chapter 9 uses a greedy algorithm with some
additional approximations to achieve a practical compromise. We will not
discuss this further here.

5.5.1 Fixing the Degrees of Freedom

Since dfy = trace(Sy) is monotone in A for smoothing splines, we can in-
vert the relationship and specify A by fixing df. In practice this can be
achieved by simple numerical methods. So, for example, in R one can use
smooth.spline(x,y,df=6) to specify the amount of smoothing. This encour-
ages a more traditional mode of model selection, where we might try a cou-
ple of different values of df, and select one based on approximate F-tests,
residual plots and other more subjective criteria. Using df in this way pro-
vides a uniform approach to compare many different smoothing methods.
It is particularly useful in generalized additive models (Chapter 9), where
several smoothing methods can be simultaneously used in one model.

5.5.2  The Bias—Variance Tradeoff

Figure 5.9 shows the effect of the choice of dfy when using a smoothing
spline on a simple example:

Y = f(X) +e,
~sin(12(X +0.2)) (5.22)
1(X) = X+02 7

with X ~ UJ0,1] and € ~ N(0, 1). Our training sample consists of N = 100
pairs x;,y; drawn independently from this model.

The fitted splines for three different values of dfy are shown. The yellow
shaded region in the figure represents the pointwise standard error of fAA,
that is, we have shaded the region between fx(z) £ 2 - se(fx(z)). Since
f= S/\Ya

Cov(f) = S,Cov(y)ST
= S,87. (5.23)
The diagonal contains the pointwise variances at the training x;. The bias

is given by

Bias(f) = f—E(f)
= f—S,f, (5.24)
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FIGURE 5.9. The top left panel shows the EPE(X) and CV(\) curves for a
realization from a monlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded £2x standard error bands, for three different values of dfy.
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where f is the (unknown) vector of evaluations of the true f at the training
X'’s. The expectations and variances are with respect to repeated draws
of samples of size N = 100 from the model (5.22). In a similar fashion
Var(fx(z0)) and Bias(fx (o)) can be computed at any point zo (Exer-
cise 5.10). The three fits displayed in the figure give a visual demonstration
of the bias-variance tradeoff associated with selecting the smoothing
parameter.

dfy = 5: The spline under fits, and clearly trims down the hills and fills in
the wvalleys. This leads to a bias that is most dramatic in regions of
high curvature. The standard error band is very narrow, so we esti-
mate a badly biased version of the true function with great reliability!

dfy = 9: Here the fitted function is close to the true function, although a
slight amount of bias seems evident. The variance has not increased
appreciably.

dfy = 15: The fitted function is somewhat wiggly, but close to the true
function. The wiggliness also accounts for the increased width of the
standard error bands—the curve is starting to follow some individual
points too closely.

Note that in these figures we are seeing a single realization of data and
hence fitted spline f in each case, while the bias involves an expectation
E(f). We leave it as an exercise (5.10) to compute similar figures where the
bias is shown as well. The middle curve seems “just right,” in that it has
achieved a good compromise between bias and variance.

The integrated squared prediction error (EPE) combines both bias and

variance in a single summary:

EPE(f\) = E(Y — fr(X))?
= Var(Y) +E [Bias(f(X)) + Var(/1(X))
= o2+ MSE(f)). (5.25)

Note that this is averaged both over the training sample (giving rise to f,\),
and the values of the (independently chosen) prediction points (X,Y). EPE
is a natural quantity of interest, and does create a tradeoff between bias
and variance. The blue points in the top left panel of Figure 5.9 suggest
that dfy =9 is spot on!

Since we don’t know the true function, we do not have access to EPE, and
need an estimate. This topic is discussed in some detail in Chapter 7, and
techniques such as K-fold cross-validation, GCV and C), are all in common
use. In Figure 5.9 we include the N-fold (leave-one-out) cross-validation
curve:
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- D (2:))2 (5.26)

N 2
(1_& D

which can (remarkably) be computed for each value of A from the original
fitted values and the diagonal elements Sy (4,4) of Sy (Exercise 5.13).

The EPE and CV curves have a similar shape, but the entire CV curve
is above the EPE curve. For some realizations this is reversed, and overall
the CV curve is approximately unbiased as an estimate of the EPE curve.

= \

i

5.6 Nonparametric Logistic Regression

The smoothing spline problem (5.9) in Section 5.4 is posed in a regression
setting. It is typically straightforward to transfer this technology to other
domains. Here we consider logistic regression with a single quantitative
input X. The model is

Pr(Y =1|X =x)
1 = 5.2
B py —0x=z) ) (5.28)
which implies
ef (@)

Fitting f(z) in a smooth fashion leads to a smooth estimate of the condi-
tional probability Pr(Y = 1|z), which can be used for classification or risk
scoring.

We construct the penalized log-likelihood criterion

al 1
(N = D lilogplan) + (1 - ) log(1 = pla)] = ;) [ (£"(0)) %

1=1

al fzi) 1 " 2
_ Z[ —log(1+e - 5A/{f t)}2dt,  (5.30)

i=1

where we have abbreviated p(x) = Pr(Y = 1|z). The first term in this ex-
pression is the log-likelihood based on the binomial distribution (c.f. Chap-
ter 4, page 120). Arguments similar to those used in Section 5.4 show that
the optimal f is a finite-dimensional natural spline with knots at the unique
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values of x. This means that we can represent f(z) = Z;\Ll N;(z)8;. We
compute the first and second derivatives

0(9)

=2 = NT(y—p)-—A\Q0 31
9°(0) T
56907 = ~NTWN - \Q, (5.32)

where p is the N-vector with elements p(x;), and W is a diagonal matrix
of weights p(z;)(1 — p(x;)). The first derivative (5.31) is nonlinear in 6, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton—
Raphson as in (4.23) and (4.26) for linear logistic regression, the update
equation can be written

gnev  — (NTWN + )\Q)leTW (NQOId -+ Wil(y - p))

We can also express this update in terms of the fitted values

e = N(NTWN + Q) 'NTW (£ + W (y — p))

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sy ., by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here x is one-
dimensional, this procedure generalizes naturally to higher-dimensional x.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focused on one-dimensional spline models. Each of the ap-
proaches have multidimensional analogs. Suppose X € IR?, and we have
a basis of functions hyx(X1), k = 1,..., M; for representing functions of
coordinate X7, and likewise a set of My functions hox(X2) for coordinate
X5. Then the M; x My dimensional tensor product basis defined by

Gik(X) = h1j(X1)hor(X2), j=1,..., My, k=1,..., M (5.35)

can be used for representing a two-dimensional function:

Mi M>

9(X) =" Okgk(X). (5.36)

j=1k=1
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FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T|z)] = h(z)T0 is fit to the binary re-
sponse, and the estimated decision boundary is the contour h(x)Té = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.
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Additive Natural Cubic Splines - 4 df each

Training Error: 0.23
Test Error: 0.28
Bayes Error:  0.21

Natural Cubic Splines - Tensor Product - 4 df each

Training Error: 0.230
Test Error: 0.282
Bayes Error:  0.210

FIGURE 5.11. The simulation example of Figure 2.1. The upper panel shows the
decision boundary of an additive logistic regression model, using natural splines
in each of the two coordinates (total df =1+ (4 —1)+ (4 —1) = 7). The lower
panel shows the results of using a tensor product of natural spline bases in each
coordinate (total df = 4 x 4 = 16). The broken purple boundary is the Bayes
decision boundary for this problem.
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One-dimensional smoothing splines (via regularization) generalize to high-
er dimensions as well. Suppose we have pairs y;, x; with z; € le, and we
seek a d-dimensional regression function f(z). The idea is to set up the
problem

N
min 3 {y; = f(@i)}* + M), (5.37)
i=1

where J is an appropriate penalty functional for stabilizing a function f in
IRY. For example, a natural generalization of the one-dimensional roughness
penalty (5.9) for functions on R? is

JIf] //R?Ka;];(;)>2+2<gzé2)2+(a;‘i(;)ﬁdxldxz. (5.38)

Optimizing (5.37) with this penalty leads to a smooth two-dimensional
surface, known as a thin-plate spline. It shares many properties with the
one-dimensional cubic smoothing spline:

e as A — 0, the solution approaches an interpolating function [the one
with smallest penalty (5.38)];

e as A — oo, the solution approaches the least squares plane;

e for intermediate values of A, the solution can be represented as a
linear expansion of basis functions, whose coefficients are obtained
by a form of generalized ridge regression.

The solution has the form

N
fl@)=Bo+ BTz + ) ajh;(x), (5.39)
j=1
where hj(z) = ||z — z;]|*log ||z — z;||. These h; are examples of radial

basis functions, which are discussed in more detail in the next section. The
coefficients are found by plugging (5.39) into (5.37), which reduces to a
finite-dimensional penalized least squares problem. For the penalty to be
finite, the coefficients «; have to satisfy a set of linear constraints; see
Exercise 5.14.

Thin-plate splines are defined more generally for arbitrary dimension d,
for which an appropriately more general J is used.

There are a number of hybrid approaches that are popular in practice,
both for computational and conceptual simplicity. Unlike one-dimensional
smoothing splines, the computational complexity for thin-plate splines is
O(N?), since there is not in general any sparse structure that can be ex-
ploited. However, as with univariate smoothing splines, we can get away
with substantially less than the N knots prescribed by the solution (5.39).
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FIGURE 5.12. A thin-plate spline fit to the heart disease data, displayed as a
contour plot. The response is systolic blood pressure, modeled as a function
of age and obesity. The data points are indicated, as well as the lattice of points
used as knots. Care should be taken to use knots from the lattice inside the convex
hull of the data (red), and ignore those outside (green,).

In practice, it is usually sufficient to work with a lattice of knots covering
the domain. The penalty is computed for the reduced expansion just as
before. Using K knots reduces the computations to O(NK? + K?). Fig-
ure 5.12 shows the result of fitting a thin-plate spline to some heart disease
risk factors, representing the surface as a contour plot. Indicated are the
location of the input features, as well as the knots used in the fit. Note that
A was specified via dfy = trace(S)) = 15.

More generally one can represent f € IR? as an expansion in any arbi-
trarily large collection of basis functions, and control the complexity by ap-
plying a regularizer such as (5.38). For example, we could construct a basis
by forming the tensor products of all pairs of univariate smoothing-spline
basis functions as in (5.35), using, for example, the univariate B-splines
recommended in Section 5.9.2 as ingredients. This leads to an exponential
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growth in basis functions as the dimension increases, and typically we have
to reduce the number of functions per coordinate accordingly.

The additive spline models discussed in Chapter 9 are a restricted class
of multidimensional splines. They can be represented in this general formu-
lation as well; that is, there exists a penalty J[f] that guarantees that the
solution has the form f(X)=a+ f1(X1)+ -+ fa(X4) and that each of
the functions f; are univariate splines. In this case the penalty is somewhat
degenerate, and it is more natural to assume that f is additive, and then
simply impose an additional penalty on each of the component functions:

JIf] = Jfi+tfot-+fa)

d

Z/f;’(tj)zdtj. (5.40)
j=1

These are naturally extended to ANOVA spline decompositions,

f(X):a+ij(Xj)+ijk(Xj,Xk)+-~, (5.41)

i<k

where each of the components are splines of the required dimension. There
are many choices to be made:

e The maximum order of interaction—we have shown up to order 2
above.

e Which terms to include—mnot all main effects and interactions are
necessarily needed.

e What representation to use—some choices are:
— regression splines with a relatively small number of basis func-

tions per coordinate, and their tensor products for interactions;

— a complete basis as in smoothing splines, and include appropri-
ate regularizers for each term in the expansion.

In many cases when the number of potential dimensions (features) is large,
automatic methods are more desirable. The MARS and MART procedures
(Chapters 9 and 10, respectively), both fall into this category.

5.8 Regularization and Reproducing Kernel
Hilbert Spaces
v
In this section we cast splines into the larger context of regularization meth-
ods and reproducing kernel Hilbert spaces. This section is quite technical
and can be skipped by the disinterested or intimidated reader.
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A general class of regularization problems has the form

N
min | > Ly, f (@) + AJ(f)] (5.42)
i=1
where L(y, f(z)) is a loss function, J(f) is a penalty functional, and H is
a space of functions on which J(f) is defined. Girosi et al. (1995) describe
quite general penalty functionals of the form

_ £ (s)]?
J(f) = /}R G (5.43)

where f denotes the Fourier transform of f, and G is some positive function
that falls off to zero as ||s|| — co. The idea is that 1/G increases the penalty
for high-frequency components of f. Under some additional assumptions
they show that the solutions have the form

K N
FX) =" ardn(X) + Y 0:G(X — ), (5.44)
k=1 1=1

where the ¢y span the null space of the penalty functional J, and G is the
inverse Fourier transform of G. Smoothing splines and thin-plate splines
fall into this framework. The remarkable feature of this solution is that
while the criterion (5.42) is defined over an infinite-dimensional space, the
solution is finite-dimensional. In the next sections we look at some specific
examples.

5.8.1 Spaces of Functions Generated by Kernels

An important subclass of problems of the form (5.42) are generated by
a positive definite kernel K (x,y), and the corresponding space of func-
tions H is called a reproducing kernel Hilbert space (RKHS). The penalty
functional J is defined in terms of the kernel as well. We give a brief and
simplified introduction to this class of models, adapted from Wahba (1990)
and Girosi et al. (1995), and nicely summarized in Evgeniou et al. (2000).

Let z,y € IRP. We consider the space of functions generated by the linear
span of {K(-,y), y € IRP)}; i.e arbitrary linear combinations of the form
f(z) = >, amK (2, ym), where each kernel term is viewed as a function
of the first argument, and indexed by the second. Suppose that K has an
eigen-expansion

K(o,5) = Y vidi(a)éi(y) (5.45)

with ; >0, 372, 77 < co. Elements of H ¢ have an expansion in terms of

these eigen-functions,
o0

f) =) cii(w), (5.46)

i=1
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with the constraint that

o0

def
1B = D i/ < oo, (5.47)
=1

where || f||#, is the norm induced by K. The penalty functional in (5.42)
for the space Hc is defined to be the squared norm J(f) = ||f|[5,,. . The
quantity J(f) can be interpreted as a generalized ridge penalty, where
functions with large eigenvalues in the expansion (5.45) get penalized less,
and vice versa.

Rewriting (5.42) we have

N
Join ;L<yi7f(xi)) + Al (5:48)

or equivalently

N [eS) oo
min ZL(yi,chqﬁj(xi)) +)\Zc?/fyj . (5.49)
{e} 135 j=1 j=1
It can be shown (Wahba, 1990, see also Exercise 5.15) that the solution
to (5.48) is finite-dimensional, and has the form

N
flx) = Z%K(Jﬁ,wi)~ (5.50)

The basis function h;(z) = K(z,x;) (as a function of the first argument) is
known as the representer of evaluation at x; in H g, since for f € Hg, it is
easily seen that (K(-,z;), f)u, = f(x;). Similarly (K (-, ), K(-, %)) nx =
K (z;,x;) (the reproducing property of Hg ), and hence

N N
J() =YY K(xizj)aia; (5.51)

i=1 j=1

for f(x) = Zf\il o K (z,x;).
In light of (5.50) and (5.51), (5.48) reduces to a finite-dimensional crite-
rion
min L(y, Key) + M Ka. (5.52)

We are using a vector notation, in which K is the NV x N matrix with ijth
entry K(z;,x;) and so on. Simple numerical algorithms can be used to
optimize (5.52). This phenomenon, whereby the infinite-dimensional prob-
lem (5.48) or (5.49) reduces to a finite dimensional optimization problem,
has been dubbed the kernel property in the literature on support-vector
machines (see Chapter 12).
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There is a Bayesian interpretation of this class of models, in which f
is interpreted as a realization of a zero-mean stationary Gaussian process,
with prior covariance function K. The eigen-decomposition produces a se-
ries of orthogonal eigen-functions ¢,(x) with associated variances ;. The
typical scenario is that “smooth” functions ¢; have large prior variance,
while “rough” ¢; have small prior variances. The penalty in (5.48) is the
contribution of the prior to the joint likelihood, and penalizes more those
components with smaller prior variance (compare with (5.43)).

For simplicity we have dealt with the case here where all members of H
are penalized, as in (5.48). More generally, there may be some components
in H that we wish to leave alone, such as the linear functions for cubic
smoothing splines in Section 5.4. The multidimensional thin-plate splines
of Section 5.7 and tensor product splines fall into this category as well.
In these cases there is a more convenient representation H = Hg ® Hi,
with the null space Hg consisting of, for example, low degree polynomi-
als in x that do not get penalized. The penalty becomes J(f) = ||P1f]],
where P is the orthogonal projection of f onto ;. The solution has the
form f(z) = Z]Ail Bihj(x) + S, oy K (2, ;), where the first term repre-
sents an expansion in Hg. From a Bayesian perspective, the coefficients of
components in Hy have improper priors, with infinite variance.

5.8.2  Fxamples of RKHS

The machinery above is driven by the choice of the kernel K and the loss
function L. We consider first regression using squared-error loss. In this
case (5.48) specializes to penalized least squares, and the solution can be
characterized in two equivalent ways corresponding to (5.49) or (5.52):

2
N

min. Yi — i cjg;(wi) | +A i ﬁ (5.53)
les} i j=1 =1
an infinite-dimensional, generalized ridge regression problem, or
moitn(y ~Ka)'(y — Ka) + \a’Ka. (5.54)
The solution for « is obtained simply as
&= (K+ M)y, (5.55)

and

flz) = Zde(x,xj). (5.56)
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The vector of N fitted values is given by

f = Ka
= KK+ ) 'y (5.57)
I+ Ky, (5.58)

The estimate (5.57) also arises as the kriging estimate of a Gaussian ran-
dom field in spatial statistics (Cressie, 1993). Compare also (5.58) with the
smoothing spline fit (5.17) on page 154.

Penalized Polynomial Regression

The kernel K(z,y) = ((z,y) + 1)? (Vapnik, 1996), for =,y € IR”, has
M = (pji'd) eigen-functions that span the space of polynomials in IRP of
total degree d. For example, with p =2 and d = 2, M = 6 and

K(z,y) = 1422191 + 22292 + 27y7 + 2595 + 2z1200192  (5.59)
M
=} h(@)hn(y) (5.60)
m=1
with
h(2)T = (1, V21,V 219, 2%, 23, V221 73). (5.61)

One can represent h in terms of the M orthogonal eigen-functions and
eigenvalues of K,

h(z) = VD2 ¢(x), (5.62)

where D, = diag(y1,72,...,7m), and V is M x M and orthogonal.
Suppose we wish to solve the penalized polynomial regression problem

N

M 2 M
min <yi - Z /Bmhm(xi)> + A Z 5,2” (563)
m=1 m=1

{Bm 1 =

Substituting (5.62) into (5.63), we get an expression of the form (5.53) to
optimize (Exercise 5.16).

The number of basis functions M ) can be very large, often much
larger than N. Equation (5.55) tells us that if we use the kernel represen-
tation for the solution function, we have only to evaluate the kernel N?2
times, and can compute the solution in O(N?) operations.

This simplicity is not without implications. Each of the polynomials A,
in (5.61) inherits a scaling factor from the particular form of K, which has
a bearing on the impact of the penalty in (5.63). We elaborate on this in
the next section.

- 0y
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Radial Kernel in R!

0.8
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FIGURE 5.13. Radial kernels ki (x) for the mizture data, with scale parameter
v = 1. The kernels are centered at five points x,, chosen at random from the 200.

Gaussian Radial Basis Functions

In the preceding example, the kernel is chosen because it represents an
expansion of polynomials and can conveniently compute high-dimensional
inner products. In this example the kernel is chosen because of its functional
form in the representation (5.50).

The Gaussian kernel K (z,y) = e~vlle—yll® along with squared-error loss,
for example, leads to a regression model that is an expansion in Gaussian
radial basis functions,

ko (z) = e ¥lT=enll® gy =1, N, (5.64)

each one centered at one of the training feature vectors x,,. The coefficients
are estimated using (5.54).

Figure 5.13 illustrates radial kernels in IR' using the first coordinate of
the mixture example from Chapter 2. We show five of the 200 kernel basis
functions k,(z) = K(z, z.,).

Figure 5.14 illustrates the implicit feature space for the radial kernel
with z € R'. We computed the 200 x 200 kernel matrix K, and its eigen-
decomposition <I>D7<I'T. We can think of the columns of ® and the corre-
sponding eigenvalues in D, as empirical estimates of the eigen expansion
(5.45)2. Although the eigenvectors are discrete, we can represent them as
functions on IR! (Exercise 5.17). Figure 5.15 shows the largest 50 eigenval-
ues of K. The leading eigenfunctions are smooth, and they are successively
more wiggly as the order increases. This brings to life the penalty in (5.49),
where we see the coefficients of higher-order functions get penalized more
than lower-order ones. The right panel in Figure 5.14 shows the correspond-

2The ¢th column of @ is an estimate of ¢y, evaluated at each of the N observations.
Alternatively, the ith row of ® is the estimated vector of basis functions ¢(z;), evaluated
at the point z;. Although in principle, there can be infinitely many elements in ¢, our
estimate has at most N elements.
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Orthonormal Basis ®

Feature Space H

Ao/

FIGURE 5.14. (Left panel) The first 16 normalized eigenvectors of K, the
200 x 200 kernel matrixz for the first coordinate of the mizture data. These are
viewed as estimates dA)( of the eigenfunctions in (5.45), and are represented as
functions in IR' with the observed values superimposed in color. They are arranged
in rows, starting at the top left. (Right panel) Rescaled versions hy = ﬂquz of
the functions in the left panel, for which the kernel computes the “inner product.”

Eigenvalue
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FIGURE 5.15. The largest 50 eigenvalues of K; all those beyond the 30th are

effectively zero.
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ing feature space representation of the eigenfunctions

he(z) = \/A,00(x), £=1,...,N. (5.65)

Note that (h(x;), h(zi)) = K(x;, ;). The scaling by the eigenvalues quickly
shrinks most of the functions down to zero, leaving an effective dimension
of about 12 in this case. The corresponding optimization problem is a stan-
dard ridge regression, as in (5.63). So although in principle the implicit
feature space is infinite dimensional, the effective dimension is dramat-
ically lower because of the relative amounts of shrinkage applied to each
basis function. The kernel scale parameter v plays a role here as well; larger
v implies more local k,, functions, and increases the effective dimension of
the feature space. See Hastie and Zhu (2006) for more details.

It is also known (Girosi et al., 1995) that a thin-plate spline (Section 5.7)
is an expansion in radial basis functions, generated by the kernel

K(z,y) = |lz — ylI*log(|z — y]))- (5.66)

Radial basis functions are discussed in more detail in Section 6.7.

Support Vector Classifiers

The support vector machines of Chapter 12 for a two-class classification
problem have the form f(z) = «ag —|—va:1 o; K (x,z;), where the parameters
are chosen to minimize

l A
min {Z[l —yif(x)]s + 2aTKa} , (5.67)

o, -
i=1

where y; € {—1,1}, and [z], denotes the positive part of z. This can be
viewed as a quadratic optimization problem with linear constraints, and
requires a quadratic programming algorithm for its solution. The name
support vector arises from the fact that typically many of the &; = 0 [due
to the piecewise-zero nature of the loss function in (5.67)], and so f is an
expansion in a subset of the K (-, z;). See Section 12.3.3 for more details.

5.9 Wavelet Smoothing

We have seen two different modes of operation with dictionaries of basis
functions. With regression splines, we select a subset of the bases, using
either subject-matter knowledge, or else automatically. The more adaptive
procedures such as MARS (Chapter 9) can capture both smooth and non-
smooth behavior. With smoothing splines, we use a complete basis, but
then shrink the coefficients toward smoothness.
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Haar Wavelets Symmlet-8 Wavelets

||| 'ly 16,35
|| I V6,15

|| I
HH Vﬂv P5,15
HH J o
HIJ I Yoo
V[\V V4,4

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time Time

FIGURE 5.16. Some selected wavelets at different translations and dilations
for the Haar and symmlet families. The functions have been scaled to suit the
display.

Wavelets typically use a complete orthonormal basis to represent func-
tions, but then shrink and select the coefficients toward a sparse represen-
tation. Just as a smooth function can be represented by a few spline basis
functions, a mostly flat function with a few isolated bumps can be repre-
sented with a few (bumpy) basis functions. Wavelets bases are very popular
in signal processing and compression, since they are able to represent both
smooth and/or locally bumpy functions in an efficient way—a phenomenon
dubbed time and frequency localization. In contrast, the traditional Fourier
basis allows only frequency localization.

Before we give details, let’s look at the Haar wavelets in the left panel
of Figure 5.16 to get an intuitive idea of how wavelet smoothing works.
The vertical axis indicates the scale (frequency) of the wavelets, from low
scale at the bottom to high scale at the top. At each scale the wavelets are
“packed in” side-by-side to completely fill the time axis: we have only shown
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a selected subset. Wavelet smoothing fits the coefficients for this basis by
least squares, and then thresholds (discards, filters) the smaller coefficients.
Since there are many basis functions at each scale, it can use bases where
it needs them and discard the ones it does not need, to achieve time and
frequency localization. The Haar wavelets are simple to understand, but not
smooth enough for most purposes. The symmlet wavelets in the right panel
of Figure 5.16 have the same orthonormal properties, but are smoother.

Figure 5.17 displays an NMR (nuclear magnetic resonance) signal, which
appears to be composed of smooth components and isolated spikes, plus
some noise. The wavelet transform, using a symmlet basis, is shown in the
lower left panel. The wavelet coefficients are arranged in rows, from lowest
scale at the bottom, to highest scale at the top. The length of each line
segment indicates the size of the coefficient. The bottom right panel shows
the wavelet coefficients after they have been thresholded. The threshold
procedure, given below in equation (5.69), is the same soft-thresholding
rule that arises in the lasso procedure for linear regression (Section 3.4.2).
Notice that many of the smaller coefficients have been set to zero. The
green curve in the top panel shows the back-transform of the thresholded
coefficients: this is the smoothed version of the original signal. In the next
section we give the details of this process, including the construction of
wavelets and the thresholding rule.

ClL]

5.9.1 Wawvelet Bases and the Wavelet Transform Vg

In this section we give details on the construction and filtering of wavelets.
Wavelet bases are generated by translations and dilations of a single scal-
ing function ¢(z) (also known as the father). The red curves in Figure 5.18
are the Haar and symmlet-8 scaling functions. The Haar basis is particu-
larly easy to understand, especially for anyone with experience in analysis
of variance or trees, since it produces a piecewise-constant representation.
Thus if ¢(z) = I(x € [0, 1]), then ¢g x(x) = ¢(x—k), k an integer, generates
an orthonormal basis for functions with jumps at the integers. Call this ref-
erence space Vy. The dilations ¢ ¢ (7) = v/2¢(2x — k) form an orthonormal
basis for a space V3 D Vj of functions piecewise constant on intervals of
length % In fact, more generally we have --- D V3 D Vg D V_y D - where
each V; is spanned by ¢; = 20242z — k).

Now to the definition of wavelets. In analysis of variance, we often rep-
resent a pair of means p; and s by their grand mean p = %(,ul + p2), and
then a contrast o = %(,ul — p2). A simplification occurs if the contrast « is
very small, because then we can set it to zero. In a similar manner we might
represent a function in V;; by a component in V; plus the component in
the orthogonal complement W; of V; to Vi1, written as Vi1 = V; @ Wj.
The component in W; represents detail, and we might wish to set some ele-
ments of this component to zero. It is easy to see that the functions ¢ (z—k)
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FIGURE 5.17. The top panel shows an NMR signal, with the wavelet-shrunk
version superimposed in green. The lower left panel represents the wavelet trans-
form of the original signal, down to Vi, using the symmlet-8 basis. Each coeffi-
cient is represented by the height (positive or negative) of the vertical bar. The
lower right panel represents the wavelet coefficients after being shrunken using
the waveshrink function in S-PLUS, which implements the SureShrink method
of wavelet adaptation of Donoho and Johnstone.
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Haar Basis Symmlet Basis
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FIGURE 5.18. The Haar and symmlet father (scaling) wavelet ¢(x) and mother
wavelet P(x).

generated by the mother wavelet (x) = ¢(22)—¢(22—1) form an orthonor-
mal basis for Wy for the Haar family. Likewise v = 27/24(2/x — k) form
a basis for W;.

Now Vi1 = V; @ W; = V1 & W;_1 @ Wj, so besides representing a
function by its level-j detail and level-j rough components, the latter can
be broken down to level-(j — 1) detail and rough, and so on. Finally we get
a representation of the form V; =V, & Wy @ Wy --- @ W;_q. Figure 5.16
on page 175 shows particular wavelets ©; x(z).

Notice that since these spaces are orthogonal, all the basis functions are
orthonormal. In fact, if the domain is discrete with N = 27 (time) points,
this is as far as we can go. There are 2/ basis elements at level j, and
adding up, we have a total of 2/ — 1 elements in the W;, and one in V.
This structured orthonormal basis allows for a multiresolution analysis,
which we illustrate in the next section.

While helpful for understanding the construction above, the Haar basis
is often too coarse for practical purposes. Fortunately, many clever wavelet
bases have been invented. Figures 5.16 and 5.18 include the Daubechies
symmlet-8 basis. This basis has smoother elements than the corresponding
Haar basis, but there is a tradeoff:

e Each wavelet has a support covering 15 consecutive time intervals,
rather than one for the Haar basis. More generally, the symmlet-p
family has a support of 2p — 1 consecutive intervals. The wider the
support, the more time the wavelet has to die to zero, and so it can
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achieve this more smoothly. Note that the effective support seems to
be much narrower.

e The symmlet-p wavelet ¢(z) has p vanishing moments; that is,
/1/)(x)3:jdx:0, j=0,...,p— 1

One implication is that any order-p polynomial over the N = 27 times
points is reproduced exactly in V; (Exercise 5.18). In this sense
is equivalent to the null space of the smoothing-spline penalty. The
Haar wavelets have one vanishing moment, and V{, can reproduce any
constant function.

The symmlet-p scaling functions are one of many families of wavelet
generators. The operations are similar to those for the Haar basis:

o If Vj is spanned by ¢(x — k), then V3 D Vj is spanned by ¢1 1 (z) =
V2¢(2z—k) and ¢(z) = 3", o 5 (k)1 k(2), for some filter coefficients
h(k).

e Wy is spanned by ¥(x) = >, oz g(k)¢1 (), with filter coefficients
g(k) = (=1)'"*h(1 - k).

o0

5.9.2  Adaptive Wavelet Filtering Vi

Wavelets are particularly useful when the data are measured on a uniform
lattice, such as a discretized signal, image, or a time series. We will focus on
the one-dimensional case, and having N = 27 lattice-points is convenient.
Suppose y is the response vector, and W is the N x N orthonormal wavelet
basis matrix evaluated at the N uniformly spaced observations. Then y* =
WTy is called the wavelet transform of y (and is the full least squares
regression coefficient). A popular method for adaptive wavelet fitting is
known as SURFE shrinkage (Stein Unbiased Risk Estimation, Donoho and
Johnstone (1994)). We start with the criterion

min|[y — WOI[3 + 2|61, (5.68)

which is the same as the lasso criterion in Chapter 3. Because W is or-
thonormal, this leads to the simple solution:

0; = sign(y;) (|} — N+ (5.69)

The least squares coefficients are translated toward zero, and truncated
at zero. The fitted function (vector) is then given by the inverse wavelet
transform f = W8.
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A simple choice for A is A = 0+/2log N, where o is an estimate of the
standard deviation of the noise. We can give some motivation for this choice.
Since W is an orthonormal transformation, if the elements of y are white
noise (independent Gaussian variates with mean 0 and variance o?), then
so are y*. Furthermore if random variables Z1, Zs, ..., Zx are white noise,
the expected maximum of |Z;|,j = 1,..., N is approximately o+/2log N.
Hence all coefficients below o+/2log N are likely to be noise and are set to
zZero.

The space W could be any basis of orthonormal functions: polynomials,
natural splines or cosinusoids. What makes wavelets special is the particular
form of basis functions used, which allows for a representation localized in
time and in frequency.

Let’s look again at the NMR signal of Figure 5.17. The wavelet transform
was computed using a symmlet—8 basis. Notice that the coefficients do not
descend all the way to Vj, but stop at V4 which has 16 basis functions.
As we ascend to each level of detail, the coefficients get smaller, except in
locations where spiky behavior is present. The wavelet coefficients represent
characteristics of the signal localized in time (the basis functions at each
level are translations of each other) and localized in frequency. Each dilation
increases the detail by a factor of two, and in this sense corresponds to
doubling the frequency in a traditional Fourier representation. In fact, a
more mathematical understanding of wavelets reveals that the wavelets at
a particular scale have a Fourier transform that is restricted to a limited
range or octave of frequencies.

The shrinking/truncation in the right panel was achieved using the SURE
approach described in the introduction to this section. The orthonormal
N x N basis matrix W has columns which are the wavelet basis functions
evaluated at the N time points. In particular, in this case there will be 16
columns corresponding to the ¢4 (x), and the remainder devoted to the
Y (z), 7 =4,...,11. In practice A depends on the noise variance, and has
to be estimated from the data (such as the variance of the coefficients at
the highest level).

Notice the similarity between the SURE criterion (5.68) on page 179,
and the smoothing spline criterion (5.21) on page 156:

e Both are hierarchically structured from coarse to fine detail, although
wavelets are also localized in time within each resolution level.

e The splines build in a bias toward smooth functions by imposing
differential shrinking constants dj. Early versions of SURE shrinkage
treated all scales equally. The S+wavelets function waveshrink() has
many options, some of which allow for differential shrinkage.

e The spline Ly penalty cause pure shrinkage, while the SURE L,
penalty does shrinkage and selection.
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More generally smoothing splines achieve compression of the original signal
by imposing smoothness, while wavelets impose sparsity. Figure 5.19 com-
pares a wavelet fit (using SURE shrinkage) to a smoothing spline fit (using
cross-validation) on two examples different in nature. For the NMR data in
the upper panel, the smoothing spline introduces detail everywhere in order
to capture the detail in the isolated spikes; the wavelet fit nicely localizes
the spikes. In the lower panel, the true function is smooth, and the noise is
relatively high. The wavelet fit has let in some additional and unnecessary
wiggles—a price it pays in variance for the additional adaptivity.

The wavelet transform is not performed by matrix multiplication as in
y* = WTy. In fact, using clever pyramidal schemes y* can be obtained
in O(N) computations, which is even faster than the N log(N) of the fast
Fourier transform (FFT). While the general construction is beyond the
scope of this book, it is easy to see for the Haar basis (Exercise 5.19).
Likewise, the inverse wavelet transform W@ is also O(N).

This has been a very brief glimpse of this vast and growing field. There is
a very large mathematical and computational base built on wavelets. Mod-
ern image compression is often performed using two-dimensional wavelet
representations.

Bibliographic Notes

Splines and B-splines are discussed in detail in de Boor (1978). Green
and Silverman (1994) and Wahba (1990) give a thorough treatment of
smoothing splines and thin-plate splines; the latter also covers reproducing
kernel Hilbert spaces. See also Girosi et al. (1995) and Evgeniou et al.
(2000) for connections between many nonparametric regression techniques
using RKHS approaches. Modeling functional data, as in Section 5.2.3, is
covered in detail in Ramsay and Silverman (1997).

Daubechies (1992) is a classic and mathematical treatment of wavelets.
Other useful sources are Chui (1992) and Wickerhauser (1994). Donoho and
Johnstone (1994) developed the SURE shrinkage and selection technology
from a statistical estimation framework; see also Vidakovic (1999). Bruce
and Gao (1996) is a useful applied introduction, which also describes the
wavelet software in S-PLUS.

Exercises

Ex. 5.1 Show that the truncated power basis functions in (5.3) represent a
basis for a cubic spline with the two knots as indicated.
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FIGURE 5.19. Wavelet smoothing compared with smoothing splines on two
examples. Fach panel compares the SURFE-shrunk wavelet fit to the cross-validated
smoothing spline fit.
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Ex. 5.2 Suppose that B; ps(x) is an order-M B-spline defined in the Ap-
pendix on page 186 through the sequence (5.77)—(5.78).

(a) Show by induction that B; ar(z) = 0 for & & [1;, 74 as]. This shows, for
example, that the support of cubic B-splines is at most 5 knots.

(b) Show by induction that B; ps(x) > 0 for = € (7;, Tit-ar). The B-splines
are positive in the interior of their support.

(¢) Show by induction that Efi"{M Biyv(x) =1Vz € [0, Ex11]-

(d) Show that B; a is a piecewise polynomial of order M (degree M — 1)
on [, &k +1], with breaks only at the knots &1, ..., ¢k.

(e) Show that an order-M B-spline basis function is the density function
of a convolution of M uniform random variables.

Ex. 5.3 Write a program to reproduce Figure 5.3 on page 145.

Ex. 5.4 Consider the truncated power series representation for cubic splines
with K interior knots. Let

3 K
FX) =D 8X7 + > 0:(X — &3 (5.70)
=0 =1

Prove that the natural boundary conditions for natural cubic splines (Sec-
tion 5.2.1) imply the following linear constraints on the coefficients:

Ba=0,  Yr,0,=0,
Bs=0, YK & =0 (5.71)

Hence derive the basis (5.4) and (5.5).

Ex. 5.5 Write a program to classify the phoneme data using a quadratic dis-
criminant analysis (Section 4.3). Since there are many correlated features,
you should filter them using a smooth basis of natural cubic splines (Sec-
tion 5.2.3). Decide beforehand on a series of five different choices for the
number and position of the knots, and use tenfold cross-validation to make
the final selection. The phoneme data are available from the book website
www-stat.stanford.edu/ElemStatLearn.

Ex. 5.6 Suppose you wish to fit a periodic function, with a known period T
Describe how you could modify the truncated power series basis to achieve
this goal.

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Sup-
pose that N > 2, and that ¢ is the natural cubic spline interpolant to the
pairs {x;, z;}¥, with @ < z; < --- < oy < b. This is a natural spline
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with a knot at every z;; being an N-dimensional space of functions, we can
determine the coefficients such that it interpolates the sequence z; exactly.
Let g be any other differentiable function on [a,b] that interpolates the N
pairs.

(a) Let h(z) = g(x) — g(x). Use integration by parts and the fact that g is
a natural cubic spline to show that

b
| @@~ —Zg"’ J{h(w541) - hlw;)} (5.72)

= 0.

/ab ' (t)%dt > /ab g"(t)*dt,

and that equality can only hold if h is identically zero in [a, b].

(b) Hence show that

(¢) Consider the penalized least squares problem

N b
min [Z(yi — flz)? + )\/a f’/(t)zdt] :

i=1
Use (b) to argue that the minimizer must be a cubic spline with knots

at each of the z;.

Ex. 5.8 In the appendix to this chapter we show how the smoothing spline
computations could be more efficiently carried out using a (N + 4) dimen-
sional basis of B-splines. Describe a slightly simpler scheme using a (N +2)
dimensional B-spline basis defined on the N — 2 interior knots.

Ex. 5.9 Derive the Reinsch form Sy = (I+\K)~! for the smoothing spline.

Ex. 5.10 Derive an expression for Var(fy(zo)) and bias(fx(z0)). Using the
example (5.22), create a version of Figure 5.9 where the mean and several
(pointwise) quantiles of fy(x) are shown.

Ex. 5.11 Prove that for a smoothing spline the null space of K is spanned
by functions linear in X.

Ex. 5.12 Characterize the solution to the following problem,

i RSS(, V) Zwl{yl F@) 4+ / (F (O, (5.73)

where the w; > 0 are observation weights.
Characterize the solution to the smoothing spline problem (5.9) when
the training data have ties in X.
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Ex. 5.13 You have fitted a smoothing spline fA to a sample of N pairs
(24,9:). Suppose you augment your original sample with the pair x, fA (o),
and refit; describe the result. Use this to derive the N-fold cross-validation
formula (5.26).

Ex. 5.14 Derive the constraints on the «; in the thin-plate spline expan-
sion (5.39) to guarantee that the penalty J(f) is finite. How else could one
ensure that the penalty was finite?

Ex. 5.15 This exercise derives some of the results quoted in Section 5.8.1.
Suppose K (x,y) satisfying the conditions (5.45) and let f(x) € H. Show
that

(@) (K (@), [lrs = fl@i).
(b) <K('>$i)7K('axj)>7-lK - K(SCZ,JC])

(c) If g(z) = "N, i K (2, x;), then
N N
=22 Ko,

( ), with p(z) € Hg, and orthogonal in H

Suppose that g(z) = ( )+
=1,...,N. Show that

to each of K (x,x;), i

(d)

N N

> L(yi () + M (@) = > Ly g(x:)) + A (g) (5.74)

i=1 i=1
with equality iff p(z) = 0.

Ex. 5.16 Consider the ridge regression problem (5.53), and assume M > N.
Assume you have a kernel K that computes the inner product K(z,y) =

S (@) o (1)

(a) Derive (5.62) on page 171 in the text. How would you compute the
matrices V and D,, given K7 Hence show that (5.63) is equivalent
o (5.53).

(b) Show that

f = HB
K(K + AI) "y, (5.75)

where H is the N x M matrix of evaluations h,, (z;), and K = HH”
the N x N matrix of inner-products h(z;)" h(z;).
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(¢) Show that
fz) = h@)"B
= ) K(x,2:)é; (5.76)

and & = (K + A\I) " ly.
(d) How would you modify your solution if M < N?

Ex. 5.17 Show how to convert the discrete eigen-decomposition of K in
Section 5.8.2 to estimates of the eigenfunctions of K.

Ex. 5.18 The wavelet function ¢(x) of the symmlet-p wavelet basis has
vanishing moments up to order p. Show that this implies that polynomials
of order p are represented exactly in V), defined on page 176.

Ex. 5.19 Show that the Haar wavelet transform of a signal of length N = 27/
can be computed in O(N) computations.

Appendix: Computations for Splines "
In this Appendix, we describe the B-spline basis for representing polyno-
mial splines. We also discuss their use in the computations of smoothing
splines.

B-splines

Before we can get started, we need to augment the knot sequence defined
in Section 5.2. Let &y < &1 and £x < £k 41 be two boundary knots, which
typically define the domain over which we wish to evaluate our spline. We
now define the augmented knot sequence 7 such that

o7 <71 < <7y < &
L4 T]+M:€]7J:1?7K7
o (it STriM+1 STRM+2 - S TR42M-

The actual values of these additional knots beyond the boundary are arbi-
trary, and it is customary to make them all the same and equal to &, and
&K 41, respectively.

Denote by B;.,(x) the ith B-spline basis function of order m for the
knot-sequence 7, m < M. They are defined recursively in terms of divided
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differences as follows:

1 ifr <ax<7i
Bia(x) = { 0 othzerwise v (5.77)
fori=1,..., K +2M — 1. These are also known as Haar basis functions.
Tr —T; Ti4em — L
Bi,m(x) = 7Bi,m—l(x) + +7Bi+l,m—1(m)
Titm—1 — Tq Titm — Ti+1

fori=1,...,K+2M —m.
(5.78)

Thus with M =4, B;4, i = 1,--- , K + 4 are the K + 4 cubic B-spline
basis functions for the knot sequence &. This recursion can be contin-
ued and will generate the B-spline basis for any order spline. Figure 5.20
shows the sequence of B-splines up to order four with knots at the points
0.0,0.1,...,1.0. Since we have created some duplicate knots, some care
has to be taken to avoid division by zero. If we adopt the convention
that B;1 = 0 if 7, = 7,41, then by induction B;,, = 0if i, = 7,41 =
... = Titm. Note also that in the construction above, only the subset
Bim, i = M —m+1,...,M + K are required for the B-spline basis
of order m < M with knots &.

To fully understand the properties of these functions, and to show that
they do indeed span the space of cubic splines for the knot sequence, re-
quires additional mathematical machinery, including the properties of di-
vided differences. Exercise 5.2 explores these issues.

The scope of B-splines is in fact bigger than advertised here, and has to
do with knot duplication. If we duplicate an interior knot in the construc-
tion of the 7 sequence above, and then generate the B-spline sequence as
before, the resulting basis spans the space of piecewise polynomials with
one less continuous derivative at the duplicated knot. In general, if in ad-
dition to the repeated boundary knots, we include the interior knot ¢;
1 < r; < M times, then the lowest-order derivative to be discontinuous
at x = §; will be order M — r;. Thus for cubic splines with no repeats,
rj =1, j=1,..., K, and at each interior knot the third derivatives (4 —1)
are discontinuous. Repeating the jth knot three times leads to a discontin-
uous 1st derivative; repeating it four times leads to a discontinuous zeroth
derivative, i.e., the function is discontinuous at x = ;. This is exactly what
happens at the boundary knots; we repeat the knots M times, so the spline
becomes discontinuous at the boundary knots (i.e., undefined beyond the
boundary).

The local support of B-splines has important computational implica-
tions, especially when the number of knots K is large. Least squares com-
putations with N observations and K + M variables (basis functions) take
O(N(K + M)? + (K + M)?) flops (floating point operations.) If K is some
appreciable fraction of N, this leads to O(N?) algorithms which becomes
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B-splines of Order 1
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from O to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.
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unacceptable for large N. If the IV observations are sorted, the N x (K + M)
regression matrix consisting of the K + M B-spline basis functions evalu-
ated at the N points has many zeros, which can be exploited to reduce the
computational complexity back to O(N). We take this up further in the
next section.

Computations for Smoothing Splines

Although natural splines (Section 5.2.1) provide a basis for smoothing
splines, it is computationally more convenient to operate in the larger space
of unconstrained B-splines. We write f(x) = f/+4 v;Bj(z), where v, are
coefficients and the B; are the cubic B-spline basis functions. The solution

looks the same as before,
4= (BTB + Q) 'Bly, (5.79)

except now the N x N matrix N is replaced by the N x (N + 4) matrix
B, and similarly the (N + 4) x (N 4 4) penalty matrix 25 replaces the
N x N dimensional Qp. Although at face value it seems that there are
no boundary derivative constraints, it turns out that the penalty term
automatically imposes them by giving effectively infinite weight to any non
zero derivative beyond the boundary. In practice, 4 is restricted to a linear
subspace for which the penalty is always finite.

Since the columns of B are the evaluated B-splines, in order from left
to right and evaluated at the sorted values of X, and the cubic B-splines
have local support, B is lower 4-banded. Consequently the matrix M =
(BTB + \Q2) is 4-banded and hence its Cholesky decomposition M = LLT
can be computed easily. One then solves LL”~ = By by back-substitution
to give v and hence the solution f in O(N) operations.

In practice, when N is large, it is unnecessary to use all N interior knots,
and any reasonable thinning strategy will save in computations and have
negligible effect on the fit. For example, the smooth.spline function in S-
PLUS uses an approximately logarithmic strategy: if N < 50 all knots are
included, but even at N = 5,000 only 204 knots are used.
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6
Kernel Smoothing Methods

In this chapter we describe a class of regression techniques that achieve
flexibility in estimating the regression function f(X) over the domain IR”
by fitting a different but simple model separately at each query point xg.
This is done by using only those observations close to the target point zq to
fit the simple model, and in such a way that the resulting estimated function
f(X) is smooth in IRP. This localization is achieved via a weighting function
or kernel K (xo, x;), which assigns a weight to z; based on its distance from
2o. The kernels K are typically indexed by a parameter A that dictates
the width of the neighborhood. These memory-based methods require in
principle little or no training; all the work gets done at evaluation time.
The only parameter that needs to be determined from the training data is
A. The model, however, is the entire training data set.

We also discuss more general classes of kernel-based techniques , which
tie in with structured methods in other chapters, and are useful for density
estimation and classification.

The techniques in this chapter should not be confused with those asso-
ciated with the more recent usage of the phrase “kernel methods”. In this
chapter kernels are mostly used as a device for localization. We discuss ker-
nel methods in Sections 5.8, 14.5.4, 18.5 and Chapter 12; in those contexts
the kernel computes an inner product in a high-dimensional (implicit) fea-
ture space, and is used for regularized nonlinear modeling. We make some
connections to the methodology in this chapter at the end of Section 6.7.
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FIGURE 6.1. In each panel 100 pairs x;, y; are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+e, X ~ UJ[0,1], e ~ N(0,1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f(:co), and the red circles indicate
those observations contributing to the fit at xo. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
A=0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k—nearest-neighbor average

f(x) = Ave(y;|z; € Ni(x)) (6.1)

as an estimate of the regression function E(Y|X = z). Here Ny (x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at z( is the average of the 30 pairs whose x; values
are closest to xg. The green curve is traced out as we apply this definition
at different values xg. The green curve is bumpy, since f (z) is discontinuous
in z. As we move x( from left to right, the k-nearest neighborhood remains
constant, until a point z; to the right of xy becomes closer than the furthest
point x;s in the neighborhood to the left of xg, at which time x; replaces ;.
The average in (6.1) changes in a discrete way, leading to a discontinuous
f(a).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya—Watson kernel-weighted
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average
_ szil Ky (1'07 xz)yl

N )
> izt K (o, @)
with the Epanechnikov quadratic kernel

f (o) (6.2)

Kx(zo,2) = D ('”“"f‘") , (6.3)

* D 3( - 2) | |_
2(1—t¢ if ¢ < 1;
_ 4 ’
(t) { 0 otherwise. (6'4)

The fitted function is now continuous, and quite smooth in the right panel
of Figure 6.1. As we move the target from left to right, points enter the
neighborhood initially with weight zero, and then their contribution slowly
increases (see Exercise 6.1).

In the right panel we used a metric window size A = 0.2 for the kernel
fit, which does not change as we move the target point xg, while the size
of the 30-nearest-neighbor smoothing window adapts to the local density
of the z;. One can, however, also use such adaptive neighborhoods with
kernels, but we need to use a more general notation. Let hy(xg) be a width
function (indexed by A) that determines the width of the neighborhood at
xg. Then more generally we have

| — 20|
K =D|(— ). 6.5
)\(an‘T) ( h)\(l'o) ( )
n (6.3), ha(xg) = A is constant. For k-nearest neighborhoods, the neigh-
borhood size k replaces A, and we have hy(zo) = |ro — x| where xpy is
the kth closest z; to zq.

There are a number of details that one has to attend to in practice:

e The smoothing parameter \, which determines the width of the local
neighborhood, has to be determined. Large A implies lower variance
(averages over more observations) but higher bias (we essentially as-
sume the true function is constant within the window).

e Metric window widths (constant hy(z)) tend to keep the bias of the
estimate constant, but the variance is inversely proportional to the
local density. Nearest-neighbor window widths exhibit the opposite
behavior; the variance stays constant and the absolute bias varies
inversely with local density.

e Issues arise with nearest-neighbors when there are ties in the x;. With
most smoothing techniques one can simply reduce the data set by
averaging the y; at tied values of X, and supplementing these new
observations at the unique values of x; with an additional weight w;
(which multiples the kernel weight).
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

e This leaves a more general problem to deal with: observation weights
w;. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to > w;). In the event of overflow (the last observation
needed in a neighborhood has a weight w; which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

e Boundary issues arise. The metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

e The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

@) i <1
D(t) = { 0 otherwise (6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density func-
tion D(t) = ¢(¢) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3 (left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,
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N-W Kernel at Boundary Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or mear the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point zq:

N

min > K (wo,2:) [y — a(wo) — Blwo)ai]” . (6.7)

a(zo),B(z0) =

The estimate is then f(z¢) = a&(z0) + B(z0)zo. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point xg.

Define the vector-valued function b(z)? = (1,z). Let B be the N x 2
regression matrix with ith row b(x;)”, and W(xg) the N x N diagonal
matrix with ith diagonal element K (xq,x;). Then

f(xo) = bxo)" (B"W(z0)B) 'B"W (zo)y (6.8)
N
= Zli(.ﬁo)yi. (69)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the
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Local Linear Equivalent Kernel at Boundary Local Linear Equivalent Kernel in Interior
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FIGURE 6.4. The green points show the equivalent kernel l;(xo) for local re-
gression. These are the weights in f(zo) = Ziv:l li(z0)yi, plotted against their
corresponding x;. For display purposes, these have been rescaled, since in fact
they sum to 1. Since the yellow shaded region is the (rescaled) equivalent kernel
for the Nadaraya—Watson local average, we see how local regression automati-
cally modifies the weighting kernel to correct for biases due to asymmetry in the
smoothing window.

y; (the l;(x0) do not involve y). These weights [;(z¢) combine the weight-
ing kernel K (xo,-) and the least squares operations, and are sometimes
referred to as the equivalent kernel. Figure 6.4 illustrates the effect of lo-
cal linear regression on the equivalent kernel. Historically, the bias in the
Nadaraya—Watson and other local average kernel methods were corrected
by modifying the kernel. These modifications were based on theoretical
asymptotic mean-square-error considerations, and besides being tedious to
implement, are only approximate for finite sample sizes. Local linear re-
gression automatically modifies the kernel to correct the bias ezactly to
first order, a phenomenon dubbed as automatic kernel carpentry. Consider
the following expansion for E f (), using the linearity of local regression
and a series expansion of the true function f around z,

Z li(zo) f (i)

Ef(z0)

N N
= f(o) > o) + f'(x0) Y (wi — wo)li(o)
1‘;/1/ N 1=1
Z x5 — 20)%li(x0) + R, (6.10)

i=1

where the remainder term R involves third- and higher-order derivatives of
f, and is typically small under suitable smoothness assumptions. It can be
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Local Linear in Interior Local Quadratic in Interior
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression, S.~ | I;(z0) = 1 and
Zf\;1(xz — x0)li(xo) = 0. Hence the middle term equals f(x(), and since
the bias is Ef(z0) — f(z0), we see that it depends only on quadratic and
higher—order terms in the expansion of f.

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

N d
i ) R _ . J

a(%)ﬁj(rilol)r,lj:Lwd ; K (zo,2;) |yi — alxo) ; Bj(xo)z] (6.11)
with solution f(zo) = d(z) +Z?=1 Bj (z0)a7). In fact, an expansion such as
(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model y; = f(x;) + &;, with
¢; independent and identically distributed with mean zero and variance
o2, Var(f(zo)) = 02||l(z0)||, where I(z¢) is the vector of equivalent kernel
weights at xq. It can be shown (Exercise 6.3) that ||/(x)|| increases with d,
and so there is a bias—variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two
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FIGURE 6.6. The variances functions ||l(x)||* for local constant, linear and
quadratic regression, for a metric bandwidth (A = 0.2) tri-cube kernel.

local polynomials. To summarize some collected wisdom on this issue:

e Local linear fits can help bias dramatically at the boundaries at a
modest cost in variance. Local quadratic fits do little at the bound-
aries for bias, but increase the variance a lot.

e Local quadratic fits tend to be most helpful in reducing bias due to
curvature in the interior of the domain.

e Asymptotic analysis suggest that local polynomials of odd degree
dominate those of even degree. This is largely due to the fact that
asymptotically the MSE is dominated by boundary effects.

While it may be helpful to tinker, and move from local linear fits at the
boundary to local quadratic fits in the interior, we do not recommend such
strategies. Usually the application will dictate the degree of the fit. For
example, if we are interested in extrapolation, then the boundary is of
more interest, and local linear fits are probably more reliable.

6.2 Selecting the Width of the Kernel

In each of the kernels K, A is a parameter that controls its width:

e For the Epanechnikov or tri-cube kernel with metric width, A is the
radius of the support region.

e For the Gaussian kernel, A is the standard deviation.

e )\ is the number k of nearest neighbors in k-nearest neighborhoods,
often expressed as a fraction or span k/N of the total training sample.
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FIGURE 6.7. Equivalent kernels for a local linear regression smoother (tri-cube
kernel; orange) and a smoothing spline (blue), with matching degrees of freedom.
The vertical spikes indicates the target points.

There is a natural bias—variance tradeoff as we change the width of the
averaging window, which is most explicit for local averages:

e If the window is narrow, f(x¢) is an average of a small number of y;
close to xq, and its variance will be relatively large—close to that of
an individual y;. The bias will tend to be small, again because each
of the E(y;) = f(x;) should be close to f(z).

e If the window is wide, the variance of f(zo) will be small relative to
the variance of any y;, because of the effects of averaging. The bias
will be higher, because we are now using observations z; further from
Zo, and there is no guarantee that f(z;) will be close to f(xo).

Similar arguments apply to local regression estimates, say local linear: as
the width goes to zero, the estimates approach a piecewise-linear function
that interpolates the training data'; as the width gets infinitely large, the
fit approaches the global linear least-squares fit to the data.

The discussion in Chapter 5 on selecting the regularization parameter for
smoothing splines applies here, and will not be repeated. Local regression
smoothers are linear estimators; the smoother matrix in f=s Ay is built up
from the equivalent kernels (6.8), and has ijth entry {Sy},; = li(z;). Leave-
one-out cross-validation is particularly simple (Exercise 6.7), as is general-
ized cross-validation, C), (Exercise 6.10), and k-fold cross-validation. The
effective degrees of freedom is again defined as trace(Sy), and can be used
to calibrate the amount of smoothing. Figure 6.7 compares the equivalent
kernels for a smoothing spline and local linear regression. The local regres-
sion smoother has a span of 40%, which results in df = trace(Sy) = 5.86.
The smoothing spline was calibrated to have the same df, and their equiv-
alent kernels are qualitatively quite similar.

IWith uniformly spaced x;; with irregularly spaced x;, the behavior can deteriorate.
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6.3 Local Regression in IR

Kernel smoothing and local regression generalize very naturally to two or
more dimensions. The Nadaraya—Watson kernel smoother fits a constant
locally with weights supplied by a p-dimensional kernel. Local linear re-
gression will fit a hyperplane locally in X, by weighted least squares, with
weights supplied by a p-dimensional kernel. It is simple to implement and
is generally preferred to the local constant fit for its superior performance
on the boundaries.

Let b(X) be a vector of polynomial terms in X of maximum degree d.
For example, with d = 1 and p = 2 we get b(X) = (1, X1, Xs); with d = 2
we get b(X) = (1, X1, X2, X7, X3, X1 X2); and trivially with d = 0 we get
b(X) = 1. At each xy € IR? solve

N

min Y Ky (2o, ) (yi — b(zs)T B(20))? (6.12)
Blwo) i

to produce the fit f(zq) = b(xo)T B(x0). Typically the kernel will be a radial
function, such as the radial Epanechnikov or tri-cube kernel

Ky (20,2) = D <w> : (6.13)

where ||-|| is the Euclidean norm. Since the Euclidean norm depends on the
units in each coordinate, it makes most sense to standardize each predictor,
for example, to unit standard deviation, prior to smoothing.

While boundary effects are a problem in one-dimensional smoothing,
they are a much bigger problem in two or higher dimensions, since the
fraction of points on the boundary is larger. In fact, one of the manifesta-
tions of the curse of dimensionality is that the fraction of points close to the
boundary increases to one as the dimension grows. Directly modifying the
kernel to accommodate two-dimensional boundaries becomes very messy,
especially for irregular boundaries. Local polynomial regression seamlessly
performs boundary correction to the desired order in any dimensions. Fig-
ure 6.8 illustrates local linear regression on some measurements from an
astronomical study with an unusual predictor design (star-shaped). Here
the boundary is extremely irregular, and the fitted surface must also inter-
polate over regions of increasing data sparsity as we approach the boundary.

Local regression becomes less useful in dimensions much higher than two
or three. We have discussed in some detail the problems of dimensional-
ity, for example, in Chapter 2. It is impossible to simultaneously main-
tain localness (= low bias) and a sizable sample in the neighborhood (=
low variance) as the dimension increases, without the total sample size in-
creasing exponentially in p. Visualization of f (X)) also becomes difficult in
higher dimensions, and this is often one of the primary goals of smoothing.



6.4 Structured Local Regression Models in IR? 201
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FIGURE 6.8. The left panel shows three-dimensional data, where the response
is the velocity measurements on a galaxy, and the two predictors record positions
on the celestial sphere. The unusual “star”-shaped design indicates the way the
measurements were made, and results in an extremely irregular boundary. The
right panel shows the results of local linear regression smoothing in IR?, using a
nearest-neighbor window with 15% of the data.

Although the scatter-cloud and wire-frame pictures in Figure 6.8 look at-
tractive, it is quite difficult to interpret the results except at a gross level.
From a data analysis perspective, conditional plots are far more useful.

Figure 6.9 shows an analysis of some environmental data with three pre-
dictors. The trellis display here shows ozone as a function of radiation,
conditioned on the other two variables, temperature and wind speed. How-
ever, conditioning on the value of a variable really implies local to that
value (as in local regression). Above each of the panels in Figure 6.9 is an
indication of the range of values present in that panel for each of the condi-
tioning values. In the panel itself the data subsets are displayed (response
versus remaining variable), and a one-dimensional local linear regression is
fit to the data. Although this is not quite the same as looking at slices of
a fitted three-dimensional surface, it is probably more useful in terms of
understanding the joint behavior of the data.

6.4 Structured Local Regression Models in IR”

When the dimension to sample-size ratio is unfavorable, local regression
does not help us much, unless we are willing to make some structural as-
sumptions about the model. Much of this book is about structured regres-
sion and classification models. Here we focus on some approaches directly
related to kernel methods.
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FIGURE 6.9. Three-dimensional smoothing example. The response is (cube-root
of ) ozone concentration, and the three predictors are temperature, wind speed and
radiation. The trellis display shows ozone as a function of radiation, conditioned
on intervals of temperature and wind speed (indicated by darker green or orange
shaded bars). FEach panel contains about 40% of the range of each of the condi-
tioned variables. The curve in each panel is a univariate local linear regression,
fit to the data in the panel.
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6.4.1 Structured Kernels

One line of approach is to modify the kernel. The default spherical ker-
nel (6.13) gives equal weight to each coordinate, and so a natural default
strategy is to standardize each variable to unit standard deviation. A more
general approach is to use a positive semidefinite matrix A to weigh the
different coordinates:

Ky a(zo,z) = D ((x —%0) Alw — x°)> . (6.14)

A

Entire coordinates or directions can be downgraded or omitted by imposing
appropriate restrictions on A. For example, if A is diagonal, then we can
increase or decrease the influence of individual predictors X; by increasing
or decreasing A;;. Often the predictors are many and highly correlated,
such as those arising from digitized analog signals or images. The covariance
function of the predictors can be used to tailor a metric A that focuses less,
say, on high-frequency contrasts (Exercise 6.4). Proposals have been made
for learning the parameters for multidimensional kernels. For example, the
projection-pursuit regression model discussed in Chapter 11 is of this flavor,
where low-rank versions of A imply ridge functions for f (X). More general
models for A are cumbersome, and we favor instead the structured forms
for the regression function discussed next.

6.4.2 Structured Regression Functions

We are trying to fit a regression function E(Y|X) = f(X1, Xs,...,X,) in
IR?, in which every level of interaction is potentially present. It is natural
to consider analysis-of-variance (ANOVA) decompositions of the form

FX1, Xayo, Xp) =t Y gi(X) + ) gre( X, Xo) 4+ (6.15)
J k<t

and then introduce structure by eliminating some of the higher-order terms.
Additive models assume only main effect terms: f(X) = a+ Z§:1 95 (X;);
second-order models will have terms with interactions of order at most
two, and so on. In Chapter 9, we describe iterative backfitting algorithms
for fitting such low-order interaction models. In the additive model, for
example, if all but the kth term is assumed known, then we can estimate gy
by local regression of Y' =3, g;(X;) on Xj. This is done for each function
in turn, repeatedly, until convergence. The important detail is that at any
stage, one-dimensional local regression is all that is needed. The same ideas
can be used to fit low-dimensional ANOVA decompositions.

An important special case of these structured models are the class of
varying coefficient models. Suppose, for example, that we divide the p pre-
dictors in X into a set (X7, Xo,...,X,) with ¢ < p, and the remainder of
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FIGURE 6.10. In each panel the aorta diameter is modeled as a linear func-
tion of age. The coefficients of this model vary with gender and depth down
the aorta (left is near the top, right is low down). There is a clear trend in the
coefficients of the linear model.

the variables we collect in the vector Z. We then assume the conditionally
linear model

fFX)=aZ)+ B1(Z2) X1+ -+ B4(2)X,. (6.16)

For given Z, this is a linear model, but each of the coefficients can vary
with Z. It is natural to fit such a model by locally weighted least squares:

N
min Y Kx(20,2) (4 — a(20) = 2181 (20) — -+ — 24iBg(20))”
a(z0),6(z0) —

(6.17)
Figure 6.10 illustrates the idea on measurements of the human aorta.
A longstanding claim has been that the aorta thickens with age. Here we
model the diameter of the aorta as a linear function of age, but allow the
coeflicients to vary with gender and depth down the aorta. We used a local
regression model separately for males and females. While the aorta clearly
does thicken with age at the higher regions of the aorta, the relationship
fades with distance down the aorta. Figure 6.11 shows the intercept and
slope as a function of depth.
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FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorta, separately for males and females. The yellow bands indicate one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local if the fitting method ac-
commodates observation weights. Here are some examples:

e Associated with each observation y; is a parameter 6; = 0(z;) = z7 8
linear in the covariate(s) x;, and inference for g is based on the log-
likelihood I(B) = vazl I(yi, 2T B). We can model §(X) more flexibly
by using the likelihood local to xq for inference of 6(xg) = x B(z0):

N

L(B(z0)) = Z K (o, 2:)l(yi, &} B(x0)).

i=1

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.
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e As above, except different variables are associated with € from those
used for defining the local likelihood:

N

1(0(20)) = Y Ka(z0, 20)1(ys, n(wi, 0(20))).

i=1

For example, n(x,0) = 276 could be a linear model in 2. This will fit
a varying coefficient model 6(z) by maximizing the local likelihood.

e Autoregressive time series models of order k have the form y, =
Bo + B1yi—1 + Bayi—2 + -+ + BrYi—k + €. Denoting the lag set by
zt = (Yt—1,Yt—2,-.-,Yt—k), the model looks like a standard linear
model y; = 2z B + &, and is typically fit by least squares. Fitting
by local least squares with a kernel K (zp,z;) allows the model to
vary according to the short-term history of the series. This is to be
distinguished from the more traditional dynamic linear models that
vary by windowing time.

As an illustration of local likelihood, we consider the local version of the
multiclass linear logistic regression model (4.36) of Chapter 4. The data
consist of features x; and an associated categorical response g; € {1,2,...,J},
and the linear model has the form

eﬁjo-i-ﬁij

14+ Ei;ll eﬁkoJrB;?i ’

Pr(G=j|X =2)= (6.18)

The local log-likelihood for this J class model can be written

N

> Ka(wo,z) {»391-0(900) + By, (x0) " (2: — o)

i=1

— log

J-1
1+ Z exp (Bro(xo) + Br(zo)” (x; — 370))] } .

k=1
(6.19)
Notice that

e we have used g; as a subscript in the first line to pick out the appro-
priate numerator;

e 350 =0 and 3; = 0 by the definition of the model;

e we have centered the local regressions at xg, so that the fitted poste-
rior probabilities at xy are simply
eBio(@o)

Pr(G = j|X = z0) = . .
r( j| 'TO) 1 +Zi;11 eﬁko(mo)

(6.20)
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FIGURE 6.12. Fach plot shows the binary response CHD (coronary heart dis-
ease) as a function of a risk factor for the South African heart disease data.
For each plot we have computed the fitted prevalence of CHD wusing a local linear
logistic regression model. The unexpected increase in the prevalence of CHD at
the lower ends of the ranges is because these are retrospective data, and some of
the subjects had already undergone treatment to reduce their blood pressure and
weight. The shaded region in the plot indicates an estimated pointwise standard
error band.

This model can be used for flexible multiclass classification in moderately
low dimensions, although successes have been reported with the high-
dimensional ZIP-code classification problem. Generalized additive models
(Chapter 9) using kernel smoothing methods are closely related, and avoid
dimensionality problems by assuming an additive structure for the regres-
sion function.

As a simple illustration we fit a two-class local linear logistic model to
the heart disease data of Chapter 4. Figure 6.12 shows the univariate local
logistic models fit to two of the risk factors (separately). This is a useful
screening device for detecting nonlinearities, when the data themselves have
little visual information to offer. In this case an unexpected anomaly is
uncovered in the data, which may have gone unnoticed with traditional
methods.

Since CHD is a binary indicator, we could estimate the conditional preva-
lence Pr(G = jlxg) by simply smoothing this binary response directly with-
out resorting to a likelihood formulation. This amounts to fitting a locally
constant logistic regression model (Exercise 6.5). In order to enjoy the bias-
correction of local-linear smoothing, it is more natural to operate on the
unrestricted logit scale.

Typically with logistic regression, we compute parameter estimates as
well as their standard errors. This can be done locally as well, and so



208 6. Kernel Smoothing Methods
o
N
8
(=}
e 2
T o
E ©
&
o
2>
@ 2 7
e o
o
a
[Te}
]
g
o
o
IS 1 TR TR T TN LT TRTTHTINTIN M T
100 120 140 160 180 200 220

Systolic Blood Pressure (for CHD group)

FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample z1,...,zy drawn from a probability
density fx(z), and we wish to estimate fx at a point xg. For simplicity we
assume for now that X € IR. Arguing as before, a natural local estimate

has the form It
fx(xo) = #2i € N(zo) f\D\ (x0)7 (6.21)

where N (zo) is a small metric neighborhood around z( of width A. This
estimate is bumpy, and the smooth Parzen estimate is preferred

N

fx(zo) = 7ZK,\(950,331), (6.22)
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FIGURE 6.14. The left panel shows the two separate density estimates for
systolic blood pressure in the CHD wversus mo-CHD groups, using a Gaussian
kernel density estimate in each. The right panel shows the estimated posterior
probabilities for CHD, using (6.25).

because it counts observations close to xy with weights that decrease with
distance from zq. In this case a popular choice for K is the Gaussian kernel
Ky (z0,x) = ¢(|Jx — xo|/N). Figure 6.13 shows a Gaussian kernel density fit
to the sample values for systolic blood pressure for the CHD group. Letting
¢ denote the Gaussian density with mean zero and standard-deviation A,
then (6.22) has the form

fx(x)

1 N
v Z oAz — z;)
= (Fxo\)(), (6.23)

the convolution of the sample empirical distribution F with ¢x. The dis-
tribution F(m) puts mass 1/N at each of the observed z;, and is jumpy; in
fx (z) we have smoothed F by adding independent Gaussian noise to each
observation x;.

The Parzen density estimate is the equivalent of the local average, and
improvements have been proposed along the lines of local regression [on the
log scale for densities; see Loader (1999)]. We will not pursue these here.
In IR? the natural generalization of the Gaussian density estimate amounts
to using the Gaussian product kernel in (6.23),

N

A 1 1 2
- - E =5 ([lzi—zoll/A)" 6.24
fx(zo) N(2)\27T)% — e ( )
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FIGURE 6.15. The population class densities may have interesting structure
(left) that disappears when the posterior probabilities are formed (right).

6.6.2 Kernel Density Classification

One can use nonparametric density estimates for classification in a straight-
forward fashion using Bayes’ theorem. Suppose for a J class problem we fit
nonparametric density estimates fj(X ), j=1,...,J separately in each of
the classes, and we also have estimates of the class priors 7; (usually the
sample proportions). Then

Pr(G = j|X = z0) = M (6.25)
k=1 TS (o)

Figure 6.14 uses this method to estimate the prevalence of CHD for the
heart risk factor study, and should be compared with the left panel of Fig-
ure 6.12. The main difference occurs in the region of high SBP in the right
panel of Figure 6.14. In this region the data are sparse for both classes, and
since the Gaussian kernel density estimates use metric kernels, the density
estimates are low and of poor quality (high variance) in these regions. The
local logistic regression method (6.20) uses the tri-cube kernel with A-NN
bandwidth; this effectively widens the kernel in this region, and makes use
of the local linear assumption to smooth out the estimate (on the logit
scale).

If classification is the ultimate goal, then learning the separate class den-
sities well may be unnecessary, and can in fact be misleading. Figure 6.15
shows an example where the densities are both multimodal, but the pos-
terior ratio is quite smooth. In learning the separate densities from data,
one might decide to settle for a rougher, high-variance fit to capture these
features, which are irrelevant for the purposes of estimating the posterior
probabilities. In fact, if classification is the ultimate goal, then we need only
to estimate the posterior well near the decision boundary (for two classes,
this is the set {z|Pr(G = 1|X = z) = 1}).

6.6.3 The Naive Bayes Classifier

This is a technique that has remained popular over the years, despite its
name (also known as “Idiot’s Bayes”!) It is especially appropriate when
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the dimension p of the feature space is high, making density estimation
unattractive. The naive Bayes model assumes that given a class G = j, the
features X, are independent:

£ =TT Fir(X0)- (6.26)
k=1

While this assumption is generally not true, it does simplify the estimation
dramatically:

e The individual class-conditional marginal densities f;; can each be
estimated separately using one-dimensional kernel density estimates.
This is in fact a generalization of the original naive Bayes procedures,
which used univariate Gaussians to represent these marginals.

e If a component X; of X is discrete, then an appropriate histogram
estimate can be used. This provides a seamless way of mixing variable
types in a feature vector.

Despite these rather optimistic assumptions, naive Bayes classifiers often
outperform far more sophisticated alternatives. The reasons are related to
Figure 6.15: although the individual class density estimates may be biased,
this bias might not hurt the posterior probabilities as much, especially
near the decision regions. In fact, the problem may be able to withstand
considerable bias for the savings in variance such a “naive” assumption
earns.

Starting from (6.26) we can derive the logit-transform (using class J as
the base):

Pr(G = €|X) _ log ngg(X)
Pr(G = J|X) 7y fr(X)
me [Ty for(Xk)
7y [Taey for(Xk)

L m L e Jor(Xy) (6.27)
= log W—J + ; log 7ka(Xk)

log

= log

p
=ar+ > gen(Xp).
k=1

This has the form of a generalized additive model, which is described in more
detail in Chapter 9. The models are fit in quite different ways though; their
differences are explored in Exercise 6.9. The relationship between naive
Bayes and generalized additive models is analogous to that between linear
discriminant analysis and logistic regression (Section 4.4.5).
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6.7 Radial Basis Functions and Kernels

In Chapter 5, functions are represented as expansions in basis functions:
fx) = Zﬁl Bjh;(x). The art of flexible modeling using basis expansions
consists of picking an appropriate family of basis functions, and then con-
trolling the complexity of the representation by selection, regularization, or
both. Some of the families of basis functions have elements that are defined
locally; for example, B-splines are defined locally in IR. If more flexibility
is desired in a particular region, then that region needs to be represented
by more basis functions (which in the case of B-splines translates to more
knots). Tensor products of IR-local basis functions deliver basis functions
local in IR?. Not all basis functions are local—for example, the truncated
power bases for splines, or the sigmoidal basis functions o(ag + ax) used
in neural-networks (see Chapter 11). The composed function f(z) can nev-
ertheless show local behavior, because of the particular signs and values
of the coefficients causing cancellations of global effects. For example, the
truncated power basis has an equivalent B-spline basis for the same space
of functions; the cancellation is exact in this case.

Kernel methods achieve flexibility by fitting simple models in a region
local to the target point x(. Localization is achieved via a weighting kernel
K, and individual observations receive weights K (xq, x;).

Radial basis functions combine these ideas, by treating the kernel func-
tions K\ (&, z) as basis functions. This leads to the model

flz) =

NE

Ky, (&5,2)B;

-
Il
—

o (15505, (6.28)

where each basis element is indexed by a location or prototype parameter §;
and a scale parameter \;. A popular choice for D is the standard Gaussian
density function. There are several approaches to learning the parameters
{A\, &, 8%, 7 =1,...,M. For simplicity we will focus on least squares
methods for regression, and use the Gaussian kernel.

I
.Mi

1

J

e Optimize the sum-of-squares with respect to all the parameters:

2
N

- Y
min MZ yi—ﬁo—;ﬁjexp{_(% fg))\z(ajz f])}

{A11§j7ﬁj}1 i=1 J

(6.29)
This model is commonly referred to as an RBF network, an alterna-
tive to the sigmoidal neural network discussed in Chapter 11; the ¢;
and \; playing the role of the weights. This criterion is nonconvex
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FIGURE 6.16. Gaussian radial basis functions in IR with fized width can leave
holes (top panel). Renormalized Gaussian radial basis functions avoid this prob-
lem, and produce basis functions similar in some respects to B-splines.

with multiple local minima, and the algorithms for optimization are
similar to those used for neural networks.

e Estimate the {)\;,;} separately from the ;. Given the former, the
estimation of the latter is a simple least squares problem. Often the
kernel parameters \; and £; are chosen in an unsupervised way using
the X distribution alone. One of the methods is to fit a Gaussian
mixture density model to the training x;, which provides both the
centers {; and the scales A\;. Other even more adhoc approaches use
clustering methods to locate the prototypes ¢;, and treat A\; = A
as a hyper-parameter. The obvious drawback of these approaches is
that the conditional distribution Pr(Y|X) and in particular E(Y|X)
is having no say in where the action is concentrated. On the positive
side, they are much simpler to implement.

While it would seem attractive to reduce the parameter set and assume
a constant value for \; = A, this can have an undesirable side effect of
creating holes—regions of IRP where none of the kernels has appreciable
support, as illustrated in Figure 6.16 (upper panel). Renormalized radial
basis functions,
D([lz —&ll/A)

hi(z) = ,
RS ST PIATT5Y
avoid this problem (lower panel).
The Nadaraya—Watson kernel regression estimator (6.2) in IR? can be
viewed as an expansion in renormalized radial basis functions,

; — SV, E(ze)
flzo) =2 i1y SN, Kx(wo,ms)
_ Zivzl yihi(wo) (631)

(6.30)
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with a basis function h; located at every observation and coefficients y;;
that is, & = x;, Bi =19y, t=1,...,N.

Note the similarity between the expansion (6.31) and the solution (5.50)
on page 169 to the regularization problem induced by the kernel K. Radial
basis functions form the bridge between the modern “kernel methods” and
local fitting technology.

6.8 Mixture Models for Density Estimation and
Classification

The mixture model is a useful tool for density estimation, and can be viewed
as a kind of kernel method. The Gaussian mixture model has the form

M
f(l?) = Z am¢(x;ﬂma Em) (632)

with mixing proportions o, Y, @, =1, and each Gaussian density has
a mean U, and covariance matrix 3,,. In general, mixture models can use
any component densities in place of the Gaussian in (6.32): the Gaussian
mixture model is by far the most popular.

The parameters are usually fit by maximum likelihood, using the EM
algorithm as described in Chapter 8. Some special cases arise:

e If the covariance matrices are constrained to be scalar: 3, = o,,1,
then (6.32) has the form of a radial basis expansion.

e If in addition o, = o > 0 is fixed, and M T N, then the max-
imum likelihood estimate for (6.32) approaches the kernel density
estimate (6.22) where G, = 1/N and fi;;, = Ty

Using Bayes’ theorem, separate mixture densities in each class lead to flex-
ible models for Pr(G|X); this is taken up in some detail in Chapter 12.

Figure 6.17 shows an application of mixtures to the heart disease risk-
factor study. In the top row are histograms of Age for the no CHD and CHD
groups separately, and then combined on the right. Using the combined
data, we fit a two-component mixture of the form (6.32) with the (scalars)
3, and X5 not constrained to be equal. Fitting was done via the EM
algorithm (Chapter 8): note that the procedure does not use knowledge of
the cHD labels. The resulting estimates were

f1 = 36.4, ¥, =157.7, a1 =0.7,
fia = 58.0, Yy =15.6, G = 0.3.
The component densities ¢(fi1, f)l) and ¢(fig, 22) are shown in the lower-

left and middle panels. The lower-right panel shows these component den-
sities (orange and blue) along with the estimated mixture density (green).
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FIGURE 6.17. Application of miztures to the heart disease risk-factor study.
(Top row:) Histograms of Age for the no CHD and CHD groups separately, and
combined. (Bottom row:) estimated component densities from a Gaussian miz-
ture model, (bottom left, bottom middle); (bottom right:) Estimated component
densities (blue and orange) along with the estimated mizture density (green). The
orange density has a very large standard deviation, and approrimates a uniform
density.

The mixture model also provides an estimate of the probability that
observation ¢ belongs to component m,

- @mqﬁ(mi;ﬂmy Em)

= —r —
Yokt Qrd (i fir, L)

where x; is Age in our example. Suppose we threshold each value 7,5 and

hence define Si = I(#i2 > 0.5). Then we can compare the classification of
each observation by CHD and the mixture model:

(6.33)

Tim

Mixture model

5=0 é=1
CHD No 232 70
Yes 76 84

Although the mixture model did not use the CHD labels, it has done a fair
job in discovering the two CHD subpopulations. Linear logistic regression,
using the CHD as a response, achieves the same error rate (32%) when fit to
these data using maximum-likelihood (Section 4.4).
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6.9 Computational Considerations

Kernel and local regression and density estimation are memory-based meth-
ods: the model is the entire training data set, and the fitting is done at
evaluation or prediction time. For many real-time applications, this can
make this class of methods infeasible.

The computational cost to fit at a single observation xg is O(N) flops,
except in oversimplified cases (such as square kernels). By comparison,
an expansion in M basis functions costs O(M) for one evaluation, and
typically M ~ O(log N). Basis function methods have an initial cost of at
least O(NM? + M?3).

The smoothing parameter(s) A for kernel methods are typically deter-
mined off-line, for example using cross-validation, at a cost of O(N?) flops.

Popular implementations of local regression, such as the loess function in
S-PLUS and R and the locfit procedure (Loader, 1999), use triangulation
schemes to reduce the computations. They compute the fit exactly at M
carefully chosen locations (O(NM)), and then use blending techniques to
interpolate the fit elsewhere (O(M) per evaluation).

Bibliographic Notes

There is a vast literature on kernel methods which we will not attempt to
summarize. Rather we will point to a few good references that themselves
have extensive bibliographies. Loader (1999) gives excellent coverage of lo-
cal regression and likelihood, and also describes state-of-the-art software
for fitting these models. Fan and Gijbels (1996) cover these models from
a more theoretical aspect. Hastie and Tibshirani (1990) discuss local re-
gression in the context of additive modeling. Silverman (1986) gives a good
overview of density estimation, as does Scott (1992).

Exercises

Ex. 6.1 Show that the Nadaraya—Watson kernel smooth with fixed metric
bandwidth A and a Gaussian kernel is differentiable. What can be said for
the Epanechnikov kernel? What can be said for the Epanechnikov kernel
with adaptive nearest-neighbor bandwidth A(xg)?

Ex. 6.2 Show that Zil(xi—xo)li(xo) = 0 for local linear regression. Define
bi(zo) = S0 (2 — 20)71i(20). Show that by(zo) = 1 for local polynomial
regression of any degree (including local constants). Show that b;(z) = 0
for all j € {1,2,...,k} for local polynomial regression of degree k. What
are the implications of this on the bias?
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Ex. 6.3 Show that [|I(z)|| (Section 6.1.2) increases with the degree of the
local polynomial.

Ex. 6.4 Suppose that the p predictors X arise from sampling relatively
smooth analog curves at p uniformly spaced abscissa values. Denote by
Cov(X|Y) = X the conditional covariance matrix of the predictors, and
assume this does not change much with Y. Discuss the nature of Maha-
lanobis choice A = X! for the metric in (6.14). How does this compare
with A = I? How might you construct a kernel A that (a) downweights
high-frequency components in the distance metric; (b) ignores them
completely?

Ex. 6.5 Show that fitting a locally constant multinomial logit model of
the form (6.19) amounts to smoothing the binary response indicators for
each class separately using a Nadaraya—Watson kernel smoother with kernel
weights K (xo, x;).

Ex. 6.6 Suppose that all you have is software for fitting local regression,
but you can specify exactly which monomials are included in the fit. How
could you use this software to fit a varying-coefficient model in some of the
variables?

Ex. 6.7 Derive an expression for the leave-one-out cross-validated residual
sum-of-squares for local polynomial regression.

Ex. 6.8 Suppose that for continuous response Y and predictor X, we model
the joint density of X,Y using a multivariate Gaussian kernel estimator.
Note that the kernel in this case would be the product kernel ¢ (X)pr(Y).
Show that the conditional mean FE(Y|X) derived from this estimate is a
Nadaraya—Watson estimator. Extend this result to classification by pro-
viding a suitable kernel for the estimation of the joint distribution of a
continuous X and discrete Y.

Ex. 6.9 Explore the differences between the naive Bayes model (6.27) and
a generalized additive logistic regression model, in terms of (a) model as-
sumptions and (b) estimation. If all the variables X} are discrete, what can
you say about the corresponding GAM?

Ex. 6.10 Suppose we have N samples generated from the model y; = f(x;)+
€i, with g; independent and identically distributed with mean zero and
variance o2, the x; assumed fixed (non random). We estimate f using a
linear smoother (local regression, smoothing spline, etc.) with smoothing
parameter A. Thus the vector of fitted values is given by f=s Ay. Consider
the in-sample prediction error

N
Z yr — f>\ i) 2 (6.34)
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for predicting new responses at the N input values. Show that the aver-
age squared residual on the training data, ASR()), is a biased estimate
(optimistic) for PE(A), while

2 2
Cy = ASR()) + %trace(sh) (6.35)

is unbiased.

Ex. 6.11 Show that for the Gaussian mixture model (6.32) the likelihood
is maximized at +oo, and describe how.

Ex. 6.12 Write a computer program to perform a local linear discrimi-
nant analysis. At each query point g, the training data receive weights
Ky (z0,x;) from a weighting kernel, and the ingredients for the linear deci-
sion boundaries (see Section 4.3) are computed by weighted averages. Try
out your program on the zipcode data, and show the training and test er-
rors for a series of five pre-chosen values of X. The zipcode data are available
from the book website www-stat.stanford.edu/ElemStatLearn.
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7

Model Assessment and Selection

7.1 Introduction

The generalization performance of a learning method relates to its predic-
tion capability on independent test data. Assessment of this performance
is extremely important in practice, since it guides the choice of learning
method or model, and gives us a measure of the quality of the ultimately
chosen model.

In this chapter we describe and illustrate the key methods for perfor-
mance assessment, and show how they are used to select models. We begin
the chapter with a discussion of the interplay between bias, variance and
model complexity.

7.2 Bias, Variance and Model Complexity

Figure 7.1 illustrates the important issue in assessing the ability of a learn-
ing method to generalize. Consider first the case of a quantitative or interval
scale response. We have a target variable Y, a vector of inputs X, and a
prediction model f (X) that has been estimated from a training set 7.
The loss function for measuring errors between Y and f(X) is denoted by
L(Y, f(X)). Typical choices are

5 { (Y — f(X))? squared error

—f

7.1
(X)] absolute error. (7.1)
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error Erry for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[ert].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

Errr = E[L(Y, f(X))|T] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set 7 is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f(X))] = E[Err7]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f .

Figure 7.1 shows the prediction error (light red curves) Errs for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of Errs will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional
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error effectively, given only the information in the same training set. Some
discussion of this point is given in Section 7.12.
Training error is the average loss over the training sample

1 & .
eIT = NZL(%JC(%’))- (7.4)

We would like to know the expected test error of our estimated model
f . As the model becomes more and more complex, it uses the training
data more and is able to adapt to more complicated underlying structures.
Hence there is a decrease in bias but an increase in variance. There is some
intermediate model complexity that gives minimum expected test error.

Unfortunately training error is not a good estimate of the test error,
as seen in Figure 7.1. Training error consistently decreases with model
complexity, typically dropping to zero if we increase the model complexity
enough. However, a model with zero training error is overfit to the training
data and will typically generalize poorly.

The story is similar for a qualitative or categorical response G taking
one of K values in a set G, labeled for convenience as 1,2, ..., K. Typically
we model the probabilities pi(X) = Pr(G = k|X) (or some monotone
transformations fi(X)), and then G(X) = arg max;, pr(X). In some cases,
such as 1-nearest neighbor classification (Chapters 2 and 13) we produce
G(X) directly. Typical loss functions are

L(G,G(X)) = I(G+#G(X)) (0-1loss), (7.5)
K

L(G,p(X)) = =23 I(G=k)logpp(X)
k=1

= —2logpc(X) (-2 x log-likelihood). (7.6)

The quantity —2 x the log-likelihood is sometimes referred to as the
deviance.

Again, test error here is Errr = E[L(G, G(X))|T], the population mis-
classification error of the classifier trained on 7, and Err is the expected
misclassification error.

Training error is the sample analogue, for example,

N
_ 2 R
erT = N z_jl log pg, (4), (7.7)

the sample log-likelihood for the model.

The log-likelihood can be used as a loss-function for general response
densities, such as the Poisson, gamma, exponential, log-normal and others.
If Prg(x)(Y') is the density of Y, indexed by a parameter 6(.X) that depends
on the predictor X, then

L(Y,0(X)) = =2 - log Pry(x)(Y). (7.8)
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The “—2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the
expected test error for a model. Typically our model will have a tuning
parameter or parameters o and so we can write our predictions as fa(:c)
The tuning parameter varies the complexity of our model, and we wish to
find the value of « that minimizes error, that is, produces the minimum of
the average test error curve in Figure 7.1. Having said this, for brevity we
will often suppress the dependence of f (x) on a.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the best one.

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

Validation Test

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.
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The methods of this chapter approximate the validation step either an-
alytically (AIC, BIC, MDL, SRM) or by efficient sample re-use (cross-
validation and the bootstrap). Besides their use in model selection, we also
examine to what extent each method provides a reliable estimate of test
error of the final chosen model.

Before jumping into these topics, we first explore in more detail the
nature of test error and the bias—variance tradeoff.

7.3 The Bias—Variance Decomposition

As in Chapter 2, if we assume that Y = f(X) + ¢ where E(¢) = 0 and
Var(e) = 02, we can derive an expression for the expected prediction error
of a regression fit f(X) at an input point X = x¢, using squared-error loss:

Err(zo) = E[Y — f(x0))?|X = ]
= 02+ [Ef(z0) — f(x0)]* + E[f(z0) — Ef (z0)]?
= 02 + Bias®(f(x0)) + Var(f (o))
= Trreducible Error + Bias® + Variance. (7.9)

The first term is the variance of the target around its true mean f(xg), and
cannot be avoided no matter how well we estimate f(x¢), unless o2 = 0.
The second term is the squared bias, the amount by which the average of
our estimate differs from the true mean; the last term is the variance; the
expected squared deviation of f(zo) around its mean. Typically the more
complex we make the model f , the lower the (squared) bias but the higher
the variance.

For the k-nearest-neighbor regression fit, these expressions have the sim-
ple form

Err(ro) = E[Y — fi(20))2IX = o]

k
o2+ | o)~ 1 3 S| +
(=1

(7.10)

N

Here we assume for simplicity that training inputs x; are fixed, and the ran-
domness arises from the y;. The number of neighbors k is inversely related
to the model complexity. For small k, the estimate fk (z) can potentially
adapt itself better to the underlying f(z). As we increase k, the bias—the
squared difference between f(z() and the average of f(z) at the k-nearest
neighbors—will typically increase, while the variance decreases.

For a linear model fit fp(m) = mTB7 where the parameter vector S with
p components is fit by least squares, we have

Err(zo) = E[(Y — fo(w0))*|X = @]
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= o2+ [f(z0) = Efp(20)]* + |h(zo)|Po2.  (7.11)

Here h(xy) = X(XTX)~!xq, the N-vector of linear weights that produce
the fit f,(z0) = 207 (XTX)"'XTy, and hence Var[f,(zo)] = ||h(zo)|]?02.
While this variance changes with xg, its average (with xg taken to be each
of the sample values z;) is (p/N)o2, and hence

N

1 1 A »
N LB = ot + 3 i)~ B ot (712)

the in-sample error. Here model complexity is directly related to the num-
ber of parameters p.

The test error Err(zq) for a ridge regression fit fa(z¢) is identical in
form to (7.11), except the linear weights in the variance term are different:
h(z¢) = X(XTX + al)~lzg. The bias term will also be different.

For a linear model family such as ridge regression, we can break down
the bias more finely. Let (8, denote the parameters of the best-fitting linear
approximation to f:

B = argminE (£(X) - X7g)%. (7.13)

Here the expectation is taken with respect to the distribution of the input
variables X. Then we can write the average squared bias as

E:vo f(xO) - Efa (ZL'()):| ’ = Eazg [f(x()) - xgﬁ*]Z + E:ro [SE;I;B* - Eﬁr(j;Boz ’

= Ave[Model Bias|? + Ave[Estimation Bias]?
(7.14)

The first term on the right-hand side is the average squared model bias, the
error between the best-fitting linear approximation and the true function.
The second term is the average squared estimation bias, the error between
the average estimate E(zl A) and the best-fitting linear approximation.

For linear models fit by ordinary least squares, the estimation bias is zero.
For restricted fits, such as ridge regression, it is positive, and we trade it off
with the benefits of a reduced variance. The model bias can only be reduced
by enlarging the class of linear models to a richer collection of models, by
including interactions and transformations of the variables in the model.

Figure 7.2 shows the bias—variance tradeoff schematically. In the case
of linear models, the model space is the set of all linear predictions from
p inputs and the black dot labeled “closest fit” is 7 3,. The blue-shaded
region indicates the error o. with which we see the truth in the training
sample.

Also shown is the variance of the least squares fit, indicated by the large
yellow circle centered at the black dot labeled “closest fit in population,’
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FIGURE 7.2. Schematic of the behavior of bias and variance. The model space
is the set of all possible predictions from the model, with the “closest fit” labeled
with a black dot. The model bias from the truth is shown, along with the variance,
indicated by the large yellow circle centered at the black dot labeled “closest fit
in population.” A shrunken or reqularized fit is also shown, having additional
estimation bias, but smaller prediction error due to its decreased variance.
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Now if we were to fit a model with fewer predictors, or regularize the coef-
ficients by shrinking them toward zero (say), we would get the “shrunken
fit” shown in the figure. This fit has an additional estimation bias, due to
the fact that it is not the closest fit in the model space. On the other hand,
it has smaller variance. If the decrease in variance exceeds the increase in
(squared) bias, then this is worthwhile.

7.3.1 FEzample: Bias—Variance Tradeoff

Figure 7.3 shows the bias—variance tradeoff for two simulated examples.
There are 80 observations and 20 predictors, uniformly distributed in the
hypercube [0, 1]?°. The situations are as follows:

Left panels: Y is 0if X7 < 1/2 and 1 if X; > 1/2, and we apply k-nearest
neighbors.

Right panels: Y is 1 if Z;il X is greater than 5 and 0 otherwise, and we
use best subset linear regression of size p.

The top row is regression with squared error loss; the bottom row is classi-
fication with 0-1 loss. The figures show the prediction error (red), squared
bias (green) and variance (blue), all computed for a large test sample.

In the regression problems, bias and variance add to produce the predic-
tion error curves, with minima at about & = 5 for k-nearest neighbors, and
p > 10 for the linear model. For classification loss (bottom figures), some
interesting phenomena can be seen. The bias and variance curves are the
same as in the top figures, and prediction error now refers to misclassifi-
cation rate. We see that prediction error is no longer the sum of squared
bias and variance. For the k-nearest neighbor classifier, prediction error
decreases or stays the same as the number of neighbors is increased to 20,
despite the fact that the squared bias is rising. For the linear model classi-
fier the minimum occurs for p > 10 as in regression, but the improvement
over the p = 1 model is more dramatic. We see that bias and variance seem
to interact in determining prediction error.

Why does this happen? There is a simple explanation for the first phe-
nomenon. Suppose at a given input point, the true probability of class 1 is
0.9 while the expected value of our estimate is 0.6. Then the squared bias—
(0.6 — 0.9)>—is considerable, but the prediction error is zero since we make
the correct decision. In other words, estimation errors that leave us on the
right side of the decision boundary don’t hurt. Exercise 7.2 demonstrates
this phenomenon analytically, and also shows the interaction effect between
bias and variance.

The overall point is that the bias—variance tradeoff behaves differently
for 0—1 loss than it does for squared error loss. This in turn means that
the best choices of tuning parameters may differ substantially in the two
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FIGURE 7.3. Expected prediction error (orange), squared bias (green) and vari-
ance (blue) for a simulated example. The top row is regression with squared error
loss; the bottom row is classification with 0—1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.
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settings. One should base the choice of tuning parameter on an estimate of
prediction error, as described in the following sections.

7.4 Optimism of the Training Error Rate

Discussions of error rate estimation can be confusing, because we have
to make clear which quantities are fixed and which are random'. Before
we continue, we need a few definitions, elaborating on the material of Sec-
tion 7.2. Given a training set 7 = {(z1,v1), (x2,y2), ... (zn,yn)} the gen-
eralization error of a model f is

Err = Exo yo[L(Y?, f(X°))|T]; (7.15)

Note that the training set 7T is fixed in expression (7.15). The point (X°,Y?)
is a new test data point, drawn from F, the joint distribution of the data.
Averaging over training sets 7 yields the expected error

Err = E7Exo yo[L(Y?, f(X°)|T], (7.16)

which is more amenable to statistical analysis. As mentioned earlier, it
turns out that most methods effectively estimate the expected error rather
than E+; see Section 7.12 for more on this point.

Now typically, the training error

1 Y .
eIT = NZL(yiaf(mi)) (7.17)

will be less than the true error Erry, because the same data is being used
to fit the method and assess its error (see Exercise 2.9). A fitting method
typically adapts to the training data, and hence the apparent or training
error err will be an overly optimistic estimate of the generalization error
Erry.

Part of the discrepancy is due to where the evaluation points occur. The
quantity Errs can be thought of as extra-sample error, since the test input
vectors don’t need to coincide with the training input vectors. The nature
of the optimism in €rT is easiest to understand when we focus instead on
the in-sample error

N
Erry, = % > Eyo[ LYY, f(2:))IT] (7.18)
=1

The Y° notation indicates that we observe N new response values at
each of the training points x;, i = 1,2,..., N. We define the optimism as

ndeed, in the first edition of our book, this section wasn’t sufficiently clear.
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the difference between Err;, and the training error err:
op = Erry, — erT. (7.19)

This is typically positive since erT is usually biased downward as an estimate
of prediction error. Finally, the average optimism is the expectation of the
optimism over training sets

w = Ey(op). (7.20)

Here the predictors in the training set are fixed, and the expectation is
over the training set outcome values; hence we have used the notation E,
instead of Es. We can usually estimate only the expected error w rather
than op, in the same way that we can estimate the expected error Err
rather than the conditional error Erry.

For squared error, 0-1, and other loss functions, one can show quite
generally that

N
2 .
w= )i ;Cov(yi,yi), (7.21)

where Cov indicates covariance. Thus the amount by which €T underesti-
mates the true error depends on how strongly y; affects its own prediction.
The harder we fit the data, the greater Cov(y;, y;) will be, thereby increas-
ing the optimism. Exercise 7.4 proves this result for squared error loss where
; is the fitted value from the regression. For 0-1 loss, §; € {0,1} is the
classification at x;, and for entropy loss, §; € [0, 1] is the fitted probability
of class 1 at x;.
In summary, we have the important relation

N
2 .
Ey (Erriy) = Ey (e7) + ; Cov(fi, yi)- (7.22)

This expression simplifies if §; is obtained by a linear fit with d inputs
or basis functions. For example,

N

> Cov(§i,yi) = do? (7.23)
i=1

for the additive error model Y = f(X) + ¢, and so

Ey (Erry,) = Ey (eFT) + 2 - %Uf. (7.24)

Expression (7.23) is the basis for the definition of the effective number of
parameters discussed in Section 7.6 The optimism increases linearly with
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the number d of inputs or basis functions we use, but decreases as the
training sample size increases. Versions of (7.24) hold approximately for
other error models, such as binary data and entropy loss.

An obvious way to estimate prediction error is to estimate the optimism
and then add it to the training error err. The methods described in the
next section—C),, AIC, BIC and others—work in this way, for a special
class of estimates that are linear in their parameters.

In contrast, cross-validation and bootstrap methods, described later in
the chapter, are direct estimates of the extra-sample error Err. These gen-
eral tools can be used with any loss function, and with nonlinear, adaptive
fitting techniques.

In-sample error is not usually of direct interest since future values of the
features are not likely to coincide with their training set values. But for
comparison between models, in-sample error is convenient and often leads
to effective model selection. The reason is that the relative (rather than
absolute) size of the error is what matters.

7.5 Estimates of In-Sample Prediction Error
The general form of the in-sample estimates is
Erry, = e + @, (7.25)

where @ is an estimate of the average optimism.
Using expression (7.24), applicable when d parameters are fit under
squared error loss, leads to a version of the so-called C), statistic,

_ d .
C, = rr—|—2-NJ€2. (7.26)

Here ¢.2 is an estimate of the noise variance, obtained from the mean-
squared error of a low-bias model. Using this criterion we adjust the training
error by a factor proportional to the number of basis functions used.

The Akaike information criterion is a similar but more generally appli-
cable estimate of Err;, when a log-likelihood loss function is used. It relies
on a relationship similar to (7.24) that holds asymptotically as N — oo:

2 . d
—2-E[log Pry(Y)] = A E[loglik] + 2 - N (7.27)
Here Pry(Y) is a family of densities for Y (containing the “true” density),
f is the maximum-likelihood estimate of #, and “loglik” is the maximized

log-likelihood:

N
loglik =) " log Pry(y:). (7.28)

i=1
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For example, for the logistic regression model, using the binomial log-
likelihood, we have

AIC = —% oglik +2- & (7.29)

N
For the Gaussian model (with variance o2 = ¢.” assumed known), the AIC
statistic is equivalent to C,, and so we refer to them collectively as AIC.

To use AIC for model selection, we simply choose the model giving small-
est AIC over the set of models considered. For nonlinear and other complex
models, we need to replace d by some measure of model complexity. We
discuss this in Section 7.6.

Given a set of models f,(z) indexed by a tuning parameter «, denote
by ert(«) and d(«) the training error and number of parameters for each
model. Then for this set of models we define

MJA?

AIC(a) = ert(a) + 2 - ~ %

(7.30)
The function AIC(«) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model
is fa(z). Note that if the basis functions are chosen adaptively, (7.23) no
longer holds. For example, if we have a total of p inputs, and we choose
the best-fitting linear model with d < p inputs, the optimism will exceed
(2d/N)o2. Put another way, by choosing the best-fitting model with d
inputs, the effective number of parameters fit is more than d.

Figure 7.4 shows AIC in action for the phoneme recognition example
of Section 5.2.3 on page 148. The input vector is the log-periodogram of
the spoken vowel, quantized to 256 uniformly spaced frequencies. A lin-
ear logistic regression model is used to predict the phoneme class, with
coefficient function S(f) = Z%Zl R (f)0m, an expansion in M spline ba-
sis functions. For any given M, a basis of natural cubic splines is used
for the h,,, with knots chosen uniformly over the range of frequencies (so
d(a)) = d(M) = M). Using AIC to select the number of basis functions will
approximately minimize Err(M) for both entropy and 0-1 loss.

The simple formula

N
(2/N)>_ Cov(gi,y:) = (2d/N)o?

=1

holds exactly for linear models with additive errors and squared error loss,
and approximately for linear models and log-likelihoods. In particular, the
formula does not hold in general for 0-1 loss (Efron, 1986), although many
authors nevertheless use it in that context (right panel of Figure 7.4).
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FIGURE 7.4. AIC wused for model selection for the phoneme recogni-
tion example of Section 5.2.3. The logistic regression coefficient function
B(f) = M hn(f)0m is modeled as an expansion in M spline basis functions.
In the left panel we see the AIC statistic used to estimate Erri, using log-likeli-
hood loss. Included is an estimate of Err based on an independent test sample. It
does well except for the extremely over-parametrized case (M = 256 parameters
for N = 1000 observations). In the right panel the same is done for 0-1 loss.
Although the AIC formula does not strictly apply here, it does a reasonable job in
this case.

7.6 The Effective Number of Parameters

The concept of “number of parameters” can be generalized, especially to
models where regularization is used in the fitting. Suppose we stack the
outcomes y1,¥s,-..,yn into a vector y, and similarly for the predictions
y. Then a linear fitting method is one for which we can write

y =Sy, (7.31)

where S is an IV x N matrix depending on the input vectors x; but not on
the y;. Linear fitting methods include linear regression on the original fea-
tures or on a derived basis set, and smoothing methods that use quadratic
shrinkage, such as ridge regression and cubic smoothing splines. Then the
effective number of parameters is defined as

df(S) = trace(S), (7.32)

the sum of the diagonal elements of S (also known as the effective degrees-
of-freedom). Note that if S is an orthogonal-projection matrix onto a basis
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set spanned by M features, then trace(S) = M. It turns out that trace(S) is
exactly the correct quantity to replace d as the number of parameters in the
C, statistic (7.26). If y arises from an additive-error model Y = f(X) +¢
with Var(e) = 02, then one can show that S~ | Cov(j;,v:) = trace(S)a2,
which motivates the more general definition

o 2iny Cov (i i)
df(y) = 1T (7.33)
(Exercises 7.4 and 7.5). Section 5.4.1 on page 153 gives some more intuition
for the definition df = trace(S) in the context of smoothing splines.

For models like neural networks, in which we minimize an error function
R(w) with weight decay penalty (regularization) a). w2, the effective

number of parameters has the form

Moo
df(a) = 3 (7.34)
m—1 9m + «

where the 6, are the eigenvalues of the Hessian matrix 92 R(w)/dwdw? .
Expression (7.34) follows from (7.32) if we make a quadratic approximation
to the error function at the solution (Bishop, 1995).

7.7 The Bayesian Approach and BIC

The Bayesian information criterion (BIC), like AIC, is applicable in settings
where the fitting is carried out by maximization of a log-likelihood. The
generic form of BIC is

BIC = —2 - loglik + (log N) - d. (7.35)

The BIC statistic (times 1/2) is also known as the Schwarz criterion (Schwarz,
1978).

Under the Gaussian model, assuming the variance o2 is known, —2-loglik
equals (up to a constant) » . (y; — f(x:))? /02, which is N -ert/0? for squared
error loss. Hence we can write

MC:2FH+&gM~§ﬁ] (7.36)
Therefore BIC is proportional to AIC (C,), with the factor 2 replaced
by log N. Assuming N > e? ~ 7.4, BIC tends to penalize complex models
more heavily, giving preference to simpler models in selection. As with AIC,
o2 is typically estimated by the mean squared error of a low-bias model.
For classification problems, use of the multinomial log-likelihood leads to a

similar relationship with the AIC, using cross-entropy as the error measure.
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Note however that the misclassification error measure does not arise in the
BIC context, since it does not correspond to the log-likelihood of the data
under any probability model.

Despite its similarity with AIC, BIC is motivated in quite a different
way. It arises in the Bayesian approach to model selection, which we now
describe.

Suppose we have a set of candidate models M,,,m = 1,..., M and
corresponding model parameters 6,,, and we wish to choose a best model
from among them. Assuming we have a prior distribution Pr(,,|M,,) for
the parameters of each model M,,, the posterior probability of a given
model is

Pr(M,|Z) < Pr(M,,)- Pr(Z|M,,) (7.37)
x Pr(M,)- / PE(Z0y, Mo )PE (O | My ),
where Z represents the training data {xz,yz}iv To compare two models
M, and M, we form the posterior odds

Pr(Mm|Z) _ Pr(M,,) Pr(Z|M.,)
Pr(M|Z)  Pr(M,) Pr(Z|M,)’ (7.38)

If the odds are greater than one we choose model m, otherwise we choose
model ¢. The rightmost quantity

_ Pr(ZIM,,)

BF(Z) = Pr(Z|M,)

(7.39)
is called the Bayes factor, the contribution of the data toward the posterior
odds.

Typically we assume that the prior over models is uniform, so that
Pr(M,,) is constant. We need some way of approximating Pr(Z|M.,,).
A so-called Laplace approximation to the integral followed by some other
simplifications (Ripley, 1996, page 64) to (7.37) gives

log Pr(Z|M,,) = log Pr(Z|0,,, M,,) — %m log N +0(1).  (7.40)

Here 0,, is a maximum likelihood estimate and d,, is the number of free
parameters in model M,,. If we define our loss function to be

-2 10g Pr(z|éma Mm)a

this is equivalent to the BIC criterion of equation (7.35).

Therefore, choosing the model with minimum BIC is equivalent to choos-
ing the model with largest (approximate) posterior probability. But this
framework gives us more. If we compute the BIC criterion for a set of M,
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models, giving BIC,,, m =1,2,..., M, then we can estimate the posterior
probability of each model M,,, as

e~ 3-BIC,,

S em2BIC (7.41)

Thus we can estimate not only the best model, but also assess the relative
merits of the models considered.

For model selection purposes, there is no clear choice between AIC and
BIC. BIC is asymptotically consistent as a selection criterion. What this
means is that given a family of models, including the true model, the prob-
ability that BIC will select the correct model approaches one as the sample
size N — oc. This is not the case for AIC, which tends to choose models
which are too complex as N — oco. On the other hand, for finite samples,
BIC often chooses models that are too simple, because of its heavy penalty
on complexity.

7.8 Minimum Description Length

The minimum description length (MDL) approach gives a selection cri-
terion formally identical to the BIC approach, but is motivated from an
optimal coding viewpoint. We first review the theory of coding for data
compression, and then apply it to model selection.

We think of our datum z as a message that we want to encode and
send to someone else (the “receiver”). We think of our model as a way of
encoding the datum, and will choose the most parsimonious model, that is
the shortest code, for the transmission.

Suppose first that the possible messages we might want to transmit are
21,29, - -+, Zm- Our code uses a finite alphabet of length A: for example, we
might use a binary code {0,1} of length A = 2. Here is an example with
four possible messages and a binary coding:

Message || 21 | 29 | Z3 | 24
Code || 0 | 10 | 110 | 111

(7.42)

This code is known as an instantaneous prefix code: no code is the pre-
fix of any other, and the receiver (who knows all of the possible codes),
knows exactly when the message has been completely sent. We restrict our
discussion to such instantaneous prefix codes.

One could use the coding in (7.42) or we could permute the codes, for
example use codes 110,10,111,0 for zq, 29, 23, 24. How do we decide which
to use? It depends on how often we will be sending each of the messages.
If, for example, we will be sending z; most often, it makes sense to use the
shortest code 0 for z;. Using this kind of strategy—shorter codes for more
frequent messages—the average message length will be shorter.
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In general, if messages are sent with probabilities Pr(z;),7 = 1,2,...,4,
a famous theorem due to Shannon says we should use code lengths I; =
—log, Pr(z;) and the average message length satisfies

E(length) > — > " Pr(z;)log, (Pr(z:)). (7.43)

The right-hand side above is also called the entropy of the distribution

Pr(z;). The inequality is an equality when the probabilities satisfy p; =

A=l In our example, if Pr(z;) = 1/2,1/4,1/8,1/8, respectively, then the

coding shown in (7.42) is optimal and achieves the entropy lower bound.
In general the lower bound cannot be achieved, but procedures like the

Huffman coding scheme can get close to the bound. Note that with an

infinite set of messages, the entropy is replaced by — [ Pr(z)log, Pr(z)dz.
From this result we glean the following;:

To transmit a random variable z having probability density func-
tion Pr(z), we require about —log, Pr(z) bits of information.

We henceforth change notation from log, Pr(z) to log Pr(z) = log, Pr(z);
this is for convenience, and just introduces an unimportant multiplicative
constant.

Now we apply this result to the problem of model selection. We have
a model M with parameters 0, and data Z = (X,y) consisting of both
inputs and outputs. Let the (conditional) probability of the outputs under
the model be Pr(y|6, M, X), assume the receiver knows all of the inputs,
and we wish to transmit the outputs. Then the message length required to
transmit the outputs is

length = —log Pr(y|0, M, X) — log Pr(6| M), (7.44)

the log-probability of the target values given the inputs. The second term
is the average code length for transmitting the model parameters @, while
the first term is the average code length for transmitting the discrepancy
between the model and actual target values. For example suppose we have
a single target y with y ~ N(6,0?%), parameter § ~ N(0,1) and no input
(for simplicity). Then the message length is
2 2
length = constant 4 log o + w=9" + 9— (7.45)
202 2
Note that the smaller o is, the shorter on average is the message length,
since y is more concentrated around 6.

The MDL principle says that we should choose the model that mini-
mizes (7.44). We recognize (7.44) as the (negative) log-posterior distribu-
tion, and hence minimizing description length is equivalent to maximizing
posterior probability. Hence the BIC criterion, derived as approximation to
log-posterior probability, can also be viewed as a device for (approximate)
model choice by minimum description length.
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FIGURE 7.5. The solid curve is the function sin(50z) for x € [0,1]. The green
(solid) and blue (hollow) points illustrate how the associated indicator function
I(sin(ax) > 0) can shatter (separate) an arbitrarily large number of points by
choosing an appropriately high frequency c.

Note that we have ignored the precision with which a random variable
z is coded. With a finite code length we cannot code a continuous variable
exactly. However, if we code z within a tolerance 0z, the message length
needed is the log of the probability in the interval [z, z+§z] which is well ap-
proximated by §zPr(z) if 6z is small. Since log §zPr(z) = log 0z + log Pr(z),
this means we can just ignore the constant log dz and use log Pr(z) as our
measure of message length, as we did above.

The preceding view of MDL for model selection says that we should
choose the model with highest posterior probability. However, many Bayes-
ians would instead do inference by sampling from the posterior distribution.

7.9 Vapnik-Chervonenkis Dimension Y
v

A difficulty in using estimates of in-sample error is the need to specify the
number of parameters (or the complexity) d used in the fit. Although the
effective number of parameters introduced in Section 7.6 is useful for some
nonlinear models, it is not fully general. The Vapnik—Chervonenkis (VC)
theory provides such a general measure of complexity, and gives associated
bounds on the optimism. Here we give a brief review of this theory.

Suppose we have a class of functions {f(z,«)} indexed by a parameter
vector «, with € IRP. Assume for now that f is an indicator function,
that is, takes the values 0 or 1. If @ = (ap, 1) and f is the linear indi-
cator function I(ag + o x > 0), then it seems reasonable to say that the
complexity of the class f is the number of parameters p + 1. But what
about f(z,a) = I(sina - z) where « is any real number and = € IR? The
function sin(50 - x) is shown in Figure 7.5. This is a very wiggly function
that gets even rougher as the frequency « increases, but it has only one
parameter: despite this, it doesn’t seem reasonable to conclude that it has
less complexity than the linear indicator function I(ag 4+ aqz) in p = 1
dimension.
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FIGURE 7.6. The first three panels show that the class of lines in the plane
can shatter three points. The last panel shows that this class cannot shatter four
points, as no line will put the hollow points on one side and the solid points on
the other. Hence the VC dimension of the class of straight lines in the plane is
three. Note that a class of nonlinear curves could shatter four points, and hence
has VC dimension greater than three.

The Vapnik—Chervonenkis dimension is a way of measuring the com-
plexity of a class of functions by assessing how wiggly its members can
be.

The VC dimension of the class {f(z,a)} is defined to be the
largest number of points (in some configuration) that can be
shattered by members of {f(x,a)}.

A set of points is said to be shattered by a class of functions if, no matter
how we assign a binary label to each point, a member of the class can
perfectly separate them.

Figure 7.6 shows that the VC dimension of linear indicator functions
in the plane is 3 but not 4, since no four points can be shattered by a
set of lines. In general, a linear indicator function in p dimensions has VC
dimension p+ 1, which is also the number of free parameters. On the other
hand, it can be shown that the family sin(ax) has infinite VC dimension,
as Figure 7.5 suggests. By appropriate choice of «, any set of points can be
shattered by this class (Exercise 7.8).

So far we have discussed the VC dimension only of indicator functions,
but this can be extended to real-valued functions. The VC dimension of a
class of real-valued functions {g(z,«)} is defined to be the VC dimension
of the indicator class {I(g(z,a) — 8 > 0)}, where /3 takes values over the
range of g.

Omne can use the VC dimension in constructing an estimate of (extra-
sample) prediction error; different types of results are available. Using the
concept of VC dimension, one can prove results about the optimism of the
training error when using a class of functions. An example of such a result is
the following. If we fit N training points using a class of functions { f(z, )}
having VC dimension h, then with probability at least 1 — 7 over training
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sets:

4 -err

Errr < @ar+ %(1 +4/1+ ) (binary classification)

€

err
Erry < ———— (regression) (7.46)
(1—cve)s
h|l N/h)+1] -1 4
where ¢ oy 08029/ 1) oz 0/1)
and 0 <a; <4, 0<ap <2

These bounds hold simultaneously for all members f(z,«), and are taken
from Cherkassky and Mulier (2007, pages 116-118). They recommend the
value ¢ = 1. For regression they suggest a; = as = 1, and for classification
they make no recommendation, with a; = 4 and ay, = 2 corresponding
to worst-case scenarios. They also give an alternative practical bound for
regression

log N
Errr < err 1—\/p—plogp+0g (7.47)
2N N

with p = %, which is free of tuning constants. The bounds suggest that the
optimism increases with h and decreases with NV in qualitative agreement
with the AIC correction d/N given in (7.24). However, the results in (7.46)
are stronger: rather than giving the expected optimism for each fixed func-
tion f(x, ), they give probabilistic upper bounds for all functions f(z, ),
and hence allow for searching over the class.

Vapnik’s structural risk minimization (SRM) approach fits a nested se-
quence of models of increasing VC dimensions hy < ho < ---, and then
chooses the model with the smallest value of the upper bound.

We note that upper bounds like the ones in (7.46) are often very loose,
but that doesn’t rule them out as good criteria for model selection, where
the relative (not absolute) size of the test error is important. The main
drawback of this approach is the difficulty in calculating the VC dimension
of a class of functions. Often only a crude upper bound for VC dimension
is obtainable, and this may not be adequate. An example in which the
structural risk minimization program can be successfully carried out is the
support vector classifier, discussed in Section 12.2.

7.9.1 Ezample (Continued)

Figure 7.7 shows the results when AIC, BIC and SRM are used to select
the model size for the examples of Figure 7.3. For the examples labeled KNN,
the model index « refers to neighborhood size, while for those labeled REG «
refers to subset size. Using each selection method (e.g., AIC) we estimated
the best model & and found its true prediction error Erry(&) on a test
set. For the same training set we computed the prediction error of the best



240 7. Model Assessment and Selection

AlC
o
8
—
— o |
173 «©
[}
o o
3]
s @7 :
2
-
IR ‘
g |
< ' H
EJ i . .
—L - :
o ——n =
T T T T
reg/KNN reg/linear class/KNN class/linear
BIC
(=3
8
-
- o |
173 «©
fo3
)
P o
s o 8
[ i
s ¢ 8 °
Q
% 8
$ F |
(=} 1 o
= ° ! o o
L o | g °
S —— — 8
| 5 —_—
= =
o 4 p—— =
T T T T
reg/KNN reg/linear class/KNN class/linear
SRM
8 - . p—
- 1
!
o ° .
B o .
ko3
8 '
P N '
o o | |
5 © 8 | !
2 |
g o | — |
o 3 ' '
I T !
= ' 1
o ' 1
s R
) -
o 4 T
T T T T
reg/KNN reg/linear class/KNN class/linear

FIGURE 7.7. Bozxplots show the distribution of the relative error
100 x [Erry(&) — ming Errr(«)]/[maxq Erry (o) — ming Erry(a)] over the four
scenarios of Figure 7.8. This is the error in using the chosen model relative to
the best model. There are 100 training sets each of size 80 represented in each
boxplot, with the errors computed on test sets of size 10, 000.
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and worst possible model choices: min, Erry(a) and max, Erry(«). The
boxplots show the distribution of the quantity

100 x Erry (&) — min, Erry(«)

max, Errr(a) — min, Errr(a)’

which represents the error in using the chosen model relative to the best
model. For linear regression the model complexity was measured by the
number of features; as mentioned in Section 7.5, this underestimates the
df, since it does not charge for the search for the best model of that size.
This was also used for the VC dimension of the linear classifier. For k-
nearest neighbors, we used the quantity N/k. Under an additive-error re-
gression model, this can be justified as the exact effective degrees of free-
dom (Exercise 7.6); we do not know if it corresponds to the VC dimen-
sion. We used a; = az = 1 for the constants in (7.46); the results for SRM
changed with different constants, and this choice gave the most favorable re-
sults. We repeated the SRM selection using the alternative practical bound
(7.47), and got almost identical results. For misclassification error we used
¢.2 = [N/(N — d)] - ert(a) for the least restrictive model (k = 5 for KNN,
since k = 1 results in zero training error). The AIC criterion seems to work
well in all four scenarios, despite the lack of theoretical support with 0-1
loss. BIC does nearly as well, while the performance of SRM is mixed.

7.10 Cross-Validation

Probably the simplest and most widely used method for estimating predic-
tion error is cross-validation. This method directly estimates the expected
extra-sample error Err = E[L(Y, f(X))], the average generalization error
when the method f (X) is applied to an independent test sample from the
joint distribution of X and Y. As mentioned earlier, we might hope that
cross-validation estimates the conditional error, with the training set 7T
held fixed. But as we will see in Section 7.12, cross-validation typically
estimates well only the expected prediction error.

7.10.1 K-Fold Cross-Validation

Ideally, if we had enough data, we would set aside a validation set and use
it to assess the performance of our prediction model. Since data are often
scarce, this is usually not possible. To finesse the problem, K-fold cross-
validation uses part of the available data to fit the model, and a different
part to test it. We split the data into K roughly equal-sized parts; for
example, when K = 5, the scenario looks like this:



242 7. Model Assessment and Selection

1 2 3 4 5

Train Train Validation Train Train

For the kth part (third above), we fit the model to the other K — 1 parts
of the data, and calculate the prediction error of the fitted model when
predicting the kth part of the data. We do this for £ = 1,2,..., K and
combine the K estimates of prediction error.

Here are more details. Let x : {1,...,N} — {1,..., K} be an indexing
function that indicates the partition to which observation 7 is allocated by
the randomization. Denote by f~*(z) the fitted function, computed with
the kth part of the data removed. Then the cross-validation estimate of
prediction error is

N
V() = 5 3 Dl Ow2). (7.48)

Typical choices of K are 5 or 10 (see below). The case K = N is known
as leave-one-out cross-validation. In this case k(i) = 4, and for the ith
observation the fit is computed using all the data except the ith.

Given a set of models f(z,«) indexed by a tuning parameter «, denote
by f~F(z, @) the ath model fit with the kth part of the data removed. Then
for this set of models we define

N
CV(f.a) = 5 3 Ll (o). (7.49)

The function CV/( f ,«) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model is
f(z, &), which we then fit to all the data.

It is interesting to wonder about what quantity K -fold cross-validation
estimates. With K = 5 or 10, we might guess that it estimates the ex-
pected error Err, since the training sets in each fold are quite different
from the original training set. On the other hand, if K = N we might
guess that cross-validation estimates the conditional error Errs. It turns
out that cross-validation only estimates effectively the average error Err,
as discussed in Section 7.12.

What value should we choose for K7 With K = N, the cross-validation
estimator is approximately unbiased for the true (expected) prediction er-
ror, but can have high variance because the N “training sets” are so similar
to one another. The computational burden is also considerable, requiring
N applications of the learning method. In certain special problems, this
computation can be done quickly—see Exercises 7.3 and 5.13.
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FIGURE 7.8. Hypothetical learning curve for a classifier on a given task: a
plot of 1 — Err versus the size of the training set N. With a dataset of 200
observations, 5-fold cross-validation would use training sets of size 160, which
would behave much like the full set. However, with a dataset of 50 observations
fivefold cross-validation would use training sets of size 40, and this would result
in a considerable overestimate of prediction error.

On the other hand, with K = 5 say, cross-validation has lower variance.
But bias could be a problem, depending on how the performance of the
learning method varies with the size of the training set. Figure 7.8 shows
a hypothetical “learning curve” for a classifier on a given task, a plot of
1 — Err versus the size of the training set N. The performance of the
classifier improves as the training set size increases to 100 observations;
increasing the number further to 200 brings only a small benefit. If our
training set had 200 observations, fivefold cross-validation would estimate
the performance of our classifier over training sets of size 160, which from
Figure 7.8 is virtually the same as the performance for training set size
200. Thus cross-validation would not suffer from much bias. However if the
training set had 50 observations, fivefold cross-validation would estimate
the performance of our classifier over training sets of size 40, and from the
figure that would be an underestimate of 1 — Err. Hence as an estimate of
Err, cross-validation would be biased upward.

To summarize, if the learning curve has a considerable slope at the given
training set size, five- or tenfold cross-validation will overestimate the true
prediction error. Whether this bias is a drawback in practice depends on
the objective. On the other hand, leave-one-out cross-validation has low
bias but can have high variance. Overall, five- or tenfold cross-validation
are recommended as a good compromise: see Breiman and Spector (1992)
and Kohavi (1995).

Figure 7.9 shows the prediction error and tenfold cross-validation curve
estimated from a single training set, from the scenario in the bottom right
panel of Figure 7.3. This is a two-class classification problem, using a lin-
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FIGURE 7.9. Prediction error (orange) and tenfold cross-validation curve
(blue) estimated from a single training set, from the scenario in the bottom right
panel of Figure 7.3.

ear model with best subsets regression of subset size p. Standard error bars
are shown, which are the standard errors of the individual misclassification
error rates for each of the ten parts. Both curves have minima at p = 10,
although the CV curve is rather flat beyond 10. Often a “one-standard
error” rule is used with cross-validation, in which we choose the most par-
simonious model whose error is no more than one standard error above
the error of the best model. Here it looks like a model with about p = 9
predictors would be chosen, while the true model uses p = 10.

Generalized cross-validation provides a convenient approximation to leave-
one out cross-validation, for linear fitting under squared-error loss. As de-
fined in Section 7.6, a linear fitting method is one for which we can write

y = Sy. (7.50)

Now for many linear fitting methods,

N N 2
N fer = S @y

(23

where S;; is the ith diagonal element of S (see Exercise 7.3). The GCV
approximation is

N . 2
GOV(f) = Zb; L —yiracj;((g;i))/N] . (7.52)
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The quantity trace(S) is the effective number of parameters, as defined in
Section 7.6.

GCV can have a computational advantage in some settings, where the
trace of S can be computed more easily than the individual elements S;;.
In smoothing problems, GCV can also alleviate the tendency of cross-
validation to undersmooth. The similarity between GCV and AIC can be
seen from the approximation 1/(1 — z)? ~ 1 + 22 (Exercise 7.7).

7.10.2 The Wrong and Right Way to Do Cross-validation

Consider a classification problem with a large number of predictors, as may
arise, for example, in genomic or proteomic applications. A typical strategy
for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors that show
fairly strong (univariate) correlation with the class labels

2. Using just this subset of predictors, build a multivariate classifier.

3. Use cross-validation to estimate the unknown tuning parameters and
to estimate the prediction error of the final model.

Is this a correct application of cross-validation? Consider a scenario with
N = 50 samples in two equal-sized classes, and p = 5000 quantitative
predictors (standard Gaussian) that are independent of the class labels.
The true (test) error rate of any classifier is 50%. We carried out the above
recipe, choosing in step (1) the 100 predictors having highest correlation
with the class labels, and then using a 1-nearest neighbor classifier, based
on just these 100 predictors, in step (2). Over 50 simulations from this
setting, the average CV error rate was 3%. This is far lower than the true
error rate of 50%.

What has happened? The problem is that the predictors have an unfair
advantage, as they were chosen in step (1) on the basis of all of the samples.
Leaving samples out after the variables have been selected does not cor-
rectly mimic the application of the classifier to a completely independent
test set, since these predictors “have already seen” the left out samples.

Figure 7.10 (top panel) illustrates the problem. We selected the 100 pre-
dictors having largest correlation with the class labels over all 50 samples.
Then we chose a random set of 10 samples, as we would do in five-fold cross-
validation, and computed the correlations of the pre-selected 100 predictors
with the class labels over just these 10 samples (top panel). We see that
the correlations average about 0.28, rather than 0, as one might expect.

Here is the correct way to carry out cross-validation in this example:

1. Divide the samples into K cross-validation folds (groups) at random.

2. For each fold k =1,2,..., K
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FIGURE 7.10. Cross-validation the wrong and right way: histograms shows the
correlation of class labels, in 10 randomly chosen samples, with the 100 predic-
tors chosen using the incorrect (upper red) and correct (lower green) versions of
cross-validation.

(a) Find a subset of “good” predictors that show fairly strong (uni-
variate) correlation with the class labels, using all of the samples
except those in fold k.

(b) Using just this subset of predictors, build a multivariate classi-
fier, using all of the samples except those in fold k.

(¢) Use the classifier to predict the class labels for the samples in
fold k.

The error estimates from step 2(c) are then accumulated over all K folds, to
produce the cross-validation estimate of prediction error. The lower panel
of Figure 7.10 shows the correlations of class labels with the 100 predictors
chosen in step 2(a) of the correct procedure, over the samples in a typical
fold k. We see that they average about zero, as they should.

In general, with a multistep modeling procedure, cross-validation must
be applied to the entire sequence of modeling steps. In particular, samples
must be “left out” before any selection or filtering steps are applied. There
is one qualification: initial unsupervised screening steps can be done be-
fore samples are left out. For example, we could select the 1000 predictors
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with highest variance across all 50 samples, before starting cross-validation.
Since this filtering does not involve the class labels, it does not give the
predictors an unfair advantage.

While this point may seem obvious to the reader, we have seen this
blunder committed many times in published papers in top rank journals.
With the large numbers of predictors that are so common in genomic and
other areas, the potential consequences of this error have also increased
dramatically; see Ambroise and McLachlan (2002) for a detailed discussion
of this issue.

7.10.3 Does Cross-Validation Really Work?

We once again examine the behavior of cross-validation in a high-dimensional
classification problem. Consider a scenario with N = 20 samples in two
equal-sized classes, and p = 500 quantitative predictors that are indepen-
dent of the class labels. Once again, the true error rate of any classifier is
50%. Consider a simple univariate classifier: a single split that minimizes
the misclassification error (a “stump”). Stumps are trees with a single split,
and are used in boosting methods (Chapter 10). A simple argument sug-
gests that cross-validation will not work properly in this setting?:

Fitting to the entire training set, we will find a predictor that
splits the data very well. If we do 5-fold cross-validation, this
same predictor should split any 4/5ths and 1/5th of the data
well too, and hence its cross-validation error will be small (much
less than 50%.) Thus C'V does not give an accurate estimate of
error.

To investigate whether this argument is correct, Figure 7.11 shows the
result of a simulation from this setting. There are 500 predictors and 20
samples, in each of two equal-sized classes, with all predictors having a
standard Gaussian distribution. The panel in the top left shows the number
of training errors for each of the 500 stumps fit to the training data. We
have marked in color the six predictors yielding the fewest errors. In the top
right panel, the training errors are shown for stumps fit to a random 4/5ths
partition of the data (16 samples), and tested on the remaining 1/5th (four
samples). The colored points indicate the same predictors marked in the
top left panel. We see that the stump for the blue predictor (whose stump
was the best in the top left panel), makes two out of four test errors (50%),
and is no better than random.

What has happened? The preceding argument has ignored the fact that
in cross-validation, the model must be completely retrained for each fold

2This argument was made to us by a scientist at a proteomics lab meeting, and led
to material in this section.
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FIGURE 7.11. Simulation study to investigate the performance of cross vali-
dation in a high-dimensional problem where the predictors are independent of the
class labels. The top-left panel shows the number of errors made by individual
stump classifiers on the full training set (20 observations). The top right panel
shows the errors made by individual stumps trained on a random split of the
dataset into 4/5ths (16 observations) and tested on the remaining 1/5th (4 ob-
servations). The best performers are depicted by colored dots in each panel. The
bottom left panel shows the effect of re-estimating the split point in each fold: the
colored points correspond to the four samples in the 4/5ths validation set. The
split point derived from the full dataset classifies all four samples correctly, but
when the split point is re-estimated on the 4/5ths data (as it should be), it com-
mits two errors on the four validation samples. In the bottom right we see the
overall result of five-fold cross-validation applied to 50 simulated datasets. The
average error rate is about 50%, as it should be.
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of the process. In the present example, this means that the best predictor
and corresponding split point are found from 4/5ths of the data. The effect
of predictor choice is seen in the top right panel. Since the class labels are
independent of the predictors, the performance of a stump on the 4/5ths
training data contains no information about its performance in the remain-
ing 1/5th. The effect of the choice of split point is shown in the bottom left
panel. Here we see the data for predictor 436, corresponding to the blue
dot in the top left plot. The colored points indicate the 1/5th data, while
the remaining points belong to the 4/5ths. The optimal split points for this
predictor based on both the full training set and 4/5ths data are indicated.
The split based on the full data makes no errors on the 1/5ths data. But
cross-validation must base its split on the 4/5ths data, and this incurs two
errors out of four samples.

The results of applying five-fold cross-validation to each of 50 simulated
datasets is shown in the bottom right panel. As we would hope, the average
cross-validation error is around 50%, which is the true expected prediction
error for this classifier. Hence cross-validation has behaved as it should.
On the other hand, there is considerable variability in the error, underscor-
ing the importance of reporting the estimated standard error of the CV
estimate. See Exercise 7.10 for another variation of this problem.

7.11 Bootstrap Methods

The bootstrap is a general tool for assessing statistical accuracy. First we
describe the bootstrap in general, and then show how it can be used to
estimate extra-sample prediction error. As with cross-validation, the boot-
strap seeks to estimate the conditional error Errs, but typically estimates
well only the expected prediction error Err.

Suppose we have a model fit to a set of training data. We denote the
training set by Z = (21, 29,...,2n) where z; = (z;,y;). The basic idea is
to randomly draw datasets with replacement from the training data, each
sample the same size as the original training set. This is done B times
(B = 100 say), producing B bootstrap datasets, as shown in Figure 7.12.
Then we refit the model to each of the bootstrap datasets, and examine
the behavior of the fits over the B replications.

In the figure, S(Z) is any quantity computed from the data Z, for ex-
ample, the prediction at some input point. From the bootstrap sampling
we can estimate any aspect of the distribution of S(Z), for example, its
variance,

B
Varls(2)] = 510 S (52~ 57, (7.53)
b=1
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FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. B training sets
Z* b =1,...,B each of size N are drawn with replacement from the original
dataset. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z*1), ..., S(Z*P) are used to assess the statistical accuracy

of S(Z).

where S* = 3", S(Z*)/B. Note that @[S(Z)] can be thought of as a
Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function £ for the data (21,22,...,2N)-

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
F*b(a;) is the predicted value at z;, from the model fitted to the bth boot-
strap dataset, our estimate is

- B N
Errpoot = EN Z Z L yza xl ) (754)
b=1 i=1

However, it is easy to see that E-Eboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in
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each class, in which the predictors and class labels are in fact independent.
Then the true error rate is 0.5. But the contributions to the bootstrap
estimate Erryoo¢ will be zero unless the observation ¢ does not appear in the
bootstrap sample b. In this latter case it will have the correct expectation
0.5. Now

1\N
Pr{observation i € bootstrap sample b} = 1— (1 — N)
~ 1—e!
0.632. (7.55)

Hence the expectation of Eﬁboot is about 0.5 x 0.368 = 0.184, far below
the correct error rate 0.5.

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-
strap samples not containing that observation. The leave-one-out bootstrap
estimate of prediction error is defined by

N
— (1) 1
E = —
T N ;

o 2 L ). (7.56)
beC—?

Here C~7 is the set of indices of the bootstrap samples b that do not contain
=)

observation i, and |C~| is the number of such samples. In computing Err
we either have to choose B large enough to ensure that all of the |C~%| are
greater than zero, or we can just leave out the terms in (7.56) corresponding
to |C~¢|’s that are zero.

__The leave-one out bootstrap solves the overfitting problem suffered by
Errpoot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632 - NV, so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The “.632 estimator” is designed to alleviate this bias. It is defined by

——(.632 —(1
Err( - .368 - err + .632 - Err( ). (7.57)

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant .632 relates to (7.55).

The .632 estimator works well in “light fitting” situations, but can break
down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of
the class labels, and we apply a one-nearest neighbor rule. Then ert = 0,
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— 1 ——(.632
Err( ) = 0.5 and so Err( ) = .632 x 0.5 = .316. However, the true error
rate is 0.5.

One can improve the .632 estimator by taking into account the amount
of overfitting. First we define v to be the no-information error rate: this
is the error rate of our prediction rule if the inputs and class labels were
independent. An estimate of v is obtained by evaluating the prediction rule
on all possible combinations of targets y; and predictors x;/

N N
. 1 ;
=Nz D> Ly f(wir)). (7.58)
i=14=1
For example, consider the dichotomous classification problem: let p; be
the observed proportion of responses y; equaling 1, and let ¢; be the ob-
served proportion of predictions f(z;/) equaling 1. Then

¥=p1(1 = @)+ (1 —p1)gr. (7.59)

With a rule like 1-nearest neighbors for which ¢; = p; the value of 4 is
2p1(1—p1). The multi-category generalization of (7.59) is ¥ = >, pe(1—4e)-
Using this, the relative overfitting rate is defined to be
—(
Err( . err

—(1
a quantity that ranges from 0 if there is no overfitting (Err( ) =@rT) to 1
if the overfitting equals the no-information value 4 — err. Finally, we define
the “.632+"” estimator by

——(.632 —(1
B O (1= ) -err 4 - Bar (7.61)

632
1— .368R

with w

R . ——(.632

The weight w ranges from .632 if R = 0 to 1 if R = 1, so Err( o
——(.632 —(1

ranges from Err( ) to Err( ). Again, the derivation of (7.61) is compli-

cated: roughly speaking, it produces a compromise between the leave-one-
out bootstrap and the training error rate that depends on the amount of

overfitting. For the 1-nearest-neighbor problem with class labels indepen-
——(.632+)

R —(1
dent of the inputs, w = R =1, so Frr = Err( ), which has the correct
—(.632+
expectation of 0.5. In other problems with less overfitting, Err( ) will
=—(1)

lie somewhere between ert and Err

7.11.1  Ezample (Continued)

Figure 7.13 shows the results of tenfold cross-validation and the .632+ boot-
strap estimate in the same four problems of Figures 7.7. As in that figure,
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FIGURE 7.13. Bozplots show the distribution of the relative error
100 - [Errg — ming Err(a)]/[max, Err(a) — ming Err(«)] over the four scenar-
i0s of Figure 7.3. This is the error in using the chosen model relative to the best
model. There are 100 training sets represented in each bozrplot.

Figure 7.13 shows boxplots of 100 - [Errg — min, Err(«)]/[max, Err(a) —
min, Err(a)], the error in using the chosen model relative to the best model.
There are 100 different training sets represented in each boxplot. Both mea-
sures perform well overall, perhaps the same or slightly worse than the AIC
in Figure 7.7.

Our conclusion is that for these particular problems and fitting methods,
minimization of either AIC, cross-validation or bootstrap yields a model
fairly close to the best available. Note that for the purpose of model selec-
tion, any of the measures could be biased and it wouldn’t affect things, as
long as the bias did not change the relative performance of the methods.
For example, the addition of a constant to any of the measures would not
change the resulting chosen model. However, for many adaptive, nonlinear
techniques (like trees), estimation of the effective number of parameters is
very difficult. This makes methods like AIC impractical and leaves us with
cross-validation or bootstrap as the methods of choice.

A different question is: how well does each method estimate test error?
On the average the AIC criterion overestimated prediction error of its cho-
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sen model by 38%, 37%, 51%, and 30%, respectively, over the four scenarios,
with BIC performing similarly. In contrast, cross-validation overestimated
the error by 1%, 4%, 0%, and 4%, with the bootstrap doing about the
same. Hence the extra work involved in computing a cross-validation or
bootstrap measure is worthwhile, if an accurate estimate of test error is
required. With other fitting methods like trees, cross-validation and boot-
strap can underestimate the true error by 10%, because the search for best
tree is strongly affected by the validation set. In these situations only a
separate test set will provide an unbiased estimate of test error.

7.12 Conditional or Expected Test Error? 0

v
Figures 7.14 and 7.15 examine the question of whether cross-validation does
a good job in estimating Errs, the error conditional on a given training set
T (expression (7.15) on page 228), as opposed to the expected test error.
For each of 100 training sets generated from the “reg/linear” setting in
the top-right panel of Figure 7.3, Figure 7.14 shows the conditional error
curves Erry as a function of subset size (top left). The next two panels show
10-fold and N-fold cross-validation, the latter also known as leave-one-out
(LOO). The thick red curve in each plot is the expected error Err, while
the thick black curves are the expected cross-validation curves. The lower
right panel shows how well cross-validation approximates the conditional
and expected error.

One might have expected N-fold CV to approximate Erry well, since it
almost uses the full training sample to fit a new test point. 10-fold CV, on
the other hand, might be expected to estimate Err well, since it averages
over somewhat different training sets. From the figure it appears 10-fold
does a better job than N-fold in estimating Errs, and estimates FErr even
better. Indeed, the similarity of the two black curves with the red curve
suggests both CV curves are approximately unbiased for Err, with 10-fold
having less variance. Similar trends were reported by Efron (1983).

Figure 7.15 shows scatterplots of both 10-fold and N-fold cross-validation
error estimates versus the true conditional error for the 100 simulations.
Although the scatterplots do not indicate much correlation, the lower right
panel shows that for the most part the correlations are negative, a curi-
ous phenomenon that has been observed before. This negative correlation
explains why neither form of CV estimates Erry well. The broken lines in
each plot are drawn at Err(p), the expected error for the best subset of
size p. We see again that both forms of CV are approximately unbiased for
expected error, but the variation in test error for different training sets is
quite substantial.

Among the four experimental conditions in 7.3, this “reg/linear” scenario
showed the highest correlation between actual and predicted test error. This
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FIGURE 7.14. Conditional prediction-error Erry, 10-fold cross-validation, and
leave-one-out cross-validation curves for a 100 simulations from the top-right
panel in Figure 7.3. The thick red curve is the expected prediction error Err,
while the thick black curves are the expected C'V curves E-CVig and E-CViy.
The lower-right panel shows the mean absolute deviation of the C'V curves from
the conditional error, E7|CVg — Errr| for K = 10 (blue) and K = N (green),
as well as from the expected error E+|CVig — Err| (orange).
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phenomenon also occurs for bootstrap estimates of error, and we would
guess, for any other estimate of conditional prediction error.

We conclude that estimation of test error for a particular training set is
not easy in general, given just the data from that same training set. Instead,
cross-validation and related methods may provide reasonable estimates of
the expected error Err.
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Exercises

Ex. 7.1 Derive the estimate of in-sample error (7.24).
Ex. 7.2 For 0-1 loss with Y € {0,1} and Pr(Y = 1|zo) = f(z0), show that
Err(zg) = Pr(Y # G(zo)|X = z0)

= EI‘I‘B(JJQ) + |2f(1‘0) — I‘PI‘(G(I‘O) 7é G(JZQ)‘X = .1‘0),
(7.62)
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where G(x) = I(f(z) > 1), G(z) = I(f(z) > 1) is the Bayes classifier,
and Errg(z) = Pr(Y # gac )X = 0), the irreducible Bayes error at x.
n f(z0) ~ N(Ef (o), Var(f(x0)), show that

Using the approximation

Pr(G(xz) # G(x0)| X = 20) ~ ® (sign(é ~ (o)) (B (o) - %)> (7.63)

Var(f(xo))
In the above,

Dt exp(—t?/2)dt

SN

the cumulative Gaussian distribution function. This is an increasing func-
tion, with value 0 at t = —oc and value 1 at ¢t = +o0.

We can think of sign(1 — F(@o))(Bf (o) — 1) as a kind of boundary-

bias term, as it depends on the true f(zo) only through which side of the
boundary (%) that it lies. Notice also that the bias and variance combine

in a multiplicative rather than additive fashion. If Ef(z¢) is on the same
side of % as f(xo), then the bias is negative, and decreasing the variance

will decrease the misclassification error. On the other hand, if Ef(zo) is
on the opposite side of % to f(xo), then the bias is positive and it pays to

increase the variance! Such an increase will improve the chance that f (z0)
falls on the correct side of 3 (Friedman, 1997).

Ex. 7.3 Let f = Sy be a linear smoothing of y.

(a) If S;; is the ith diagonal element of S, show that for S arising from least
squares projections and cubic smoothing splines, the cross-validated
residual can be written as

yi — [ (@) = 7 (7.64)

(b) Use this result to show that |y; — f~%(zs)| > |y — f(x:)].
(¢) Find general conditions on any smoother S to make result (7.64) hold.

Ex. 7.4 Consider the in-sample prediction error (7.18) and the training
error eIt in the case of squared-error loss:

1
Err,, = N Z Eyo (Yio - f(xz))2

1 & )
T = ﬁZ(yi*f(Ii))Q-
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Add and subtract f(z;) and Ef(z;) in each expression and expand. Hence
establish that the average optimism in the training error is

9 N
N ZCOV@%%‘),
N =1

as given in (7.21).
Ex. 7.5 For a linear smoother y = Sy, show that

N
ZCOV(Qi7yi) = trace(S)o?2, (7.65)

i=1
which justifies its use as the effective number of parameters.

Ex. 7.6 Show that for an additive-error model, the effective degrees-of-
freedom for the k-nearest-neighbors regression fit is N/k.

Ex. 7.7 Use the approximation 1/(1—x)? ~ 1+2x to expose the relationship
between C,/AIC (7.26) and GCV (7.52), the main difference being the

model used to estimate the noise variance o2.

Ex. 7.8 Show that the set of functions {I(sin(axz) > 0)} can shatter the
following points on the line:

2 =1071 ..., 25 =107, (7.66)
for any ¢. Hence the VC dimension of the class {I(sin(ax) > 0)} is infinite.

Ex. 7.9 For the prostate data of Chapter 3, carry out a best-subset linear
regression analysis, as in Table 3.3 (third column from left). Compute the
AIC, BIC, five- and tenfold cross-validation, and bootstrap .632 estimates
of prediction error. Discuss the results.

Ex. 7.10 Referring to the example in Section 7.10.3, suppose instead that
all of the p predictors are binary, and hence there is no need to estimate
split points. The predictors are independent of the class labels as before.
Then if p is very large, we can probably find a predictor that splits the
entire training data perfectly, and hence would split the validation data
(one-fifth of data) perfectly as well. This predictor would therefore have
zero cross-validation error. Does this mean that cross-validation does not
provide a good estimate of test error in this situation? [This question was
suggested by Li Ma.]
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8

Model Inference and Averaging

8.1 Introduction

For most of this book, the fitting (learning) of models has been achieved by
minimizing a sum of squares for regression, or by minimizing cross-entropy
for classification. In fact, both of these minimizations are instances of the
maximum likelihood approach to fitting.

In this chapter we provide a general exposition of the maximum likeli-
hood approach, as well as the Bayesian method for inference. The boot-
strap, introduced in Chapter 7, is discussed in this context, and its relation
to maximum likelihood and Bayes is described. Finally, we present some
related techniques for model averaging and improvement, including com-
mittee methods, bagging, stacking and bumping.

8.2 The Bootstrap and Maximum Likelihood
Methods

8.2.1 A Smoothing Fxample

The bootstrap method provides a direct computational way of assessing
uncertainty, by sampling from the training data. Here we illustrate the
bootstrap in a simple one-dimensional smoothing problem, and show its
connection to maximum likelihood.
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FIGURE 8.1. (Left panel): Data for smoothing ezample. (Right panel:) Set of
seven B-spline basis functions. The broken vertical lines indicate the placement
of the three knots.

Denote the training data by Z = {z1,22,...,2x5}, with z; = (z;,v:),
1 =1,2,...,N. Here z; is a one-dimensional input, and y; the outcome,
either continuous or categorical. As an example, consider the N = 50 data
points shown in the left panel of Figure 8.1.

Suppose we decide to fit a cubic spline to the data, with three knots
placed at the quartiles of the X values. This is a seven-dimensional lin-
ear space of functions, and can be represented, for example, by a linear
expansion of B-spline basis functions (see Section 5.9.2):

T
w(z) = > Bihj(=). (8.1)
j=1

Here the hj(x), 7 = 1,2,...,7 are the seven functions shown in the right
panel of Figure 8.1. We can think of u(x) as representing the conditional
mean E(Y|X = z).

Let H be the N x 7 matrix with 4jth element h;(z;). The usual estimate
of B, obtained by minimizing the squared error over the training set, is
given by

B=MHTH) 'Hy. (8.2)

The corresponding fit ji(x) = Z;:l Bjh;i(x) is shown in the top left panel
of Figure 8.2. X
The estimated covariance matrix of 3 is

Var(f) = (HTH) 142, (8.3)

where we have estimated the noise variance by 62 = 32 (y; — fu(x;))?/N.
Letting h(z)T = (h1(x), ha(2),. .., h7(x)), the standard error of a predic-
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FIGURE 8.2. (Top left:) B-spline smooth of data. (Top right:) B-spline smooth
plus and minus 1.96x standard error bands. (Bottom left:) Ten bootstrap repli-
cates of the B-spline smooth. (Bottom right:) B-spline smooth with 95% standard
error bands computed from the bootstrap distribution.
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tion fi(z) = h(z)T B is
()] = ()" (HTH) h(z)] o, (5.4

In the top right panel of Figure 8.2 we have plotted fi(x) £1.96-Se[fi(x)].
Since 1.96 is the 97.5% point of the standard normal distribution, these
represent approximate 100 — 2 x 2.5% = 95% pointwise confidence bands
for p(x).

Here is how we could apply the bootstrap in this example. We draw B
datasets each of size N = 50 with replacement from our training data, the
sampling unit being the pair z; = (x;,y;). To each bootstrap dataset Z*
we fit a cubic spline i*(z); the fits from ten such samples are shown in the
bottom left panel of Figure 8.2. Using B = 200 bootstrap samples, we can
form a 95% pointwise confidence band from the percentiles at each x: we
find the 2.5% x 200 = fifth largest and smallest values at each x. These are
plotted in the bottom right panel of Figure 8.2. The bands look similar to
those in the top right, being a little wider at the endpoints.

There is actually a close connection between the least squares estimates
(8.2) and (8.3), the bootstrap, and maximum likelihood. Suppose we further
assume that the model errors are Gaussian,

Y = pu(X)+e e~ N(0,0%

7
Z Bihj(z). (8.5)

()

The bootstrap method described above, in which we sample with re-
placement from the training data, is called the nonparametric bootstrap.
This really means that the method is “model-free,” since it uses the raw
data, not a specific parametric model, to generate new datasets. Consider
a variation of the bootstrap, called the parametric bootstrap, in which we
simulate new responses by adding Gaussian noise to the predicted values:

yi = f(x;) +ef; el ~N(0,6%); i=1,2,...,N. (8.6)

This process is repeated B times, where B = 200 say. The resulting boot-
strap datasets have the form (z1,v7),..., (zn,y%) and we recompute the
B-spline smooth on each. The confidence bands from this method will ex-
actly equal the least squares bands in the top right panel, as the number of
bootstrap samples goes to infinity. A function estimated from a bootstrap
sample y* is given by i*(x) = h(z)T (HTH)'H”y*, and has distribution

i (2) ~ N(i(), h(e)" (HTH) " h()8?). (8.7)

Notice that the mean of this distribution is the least squares estimate, and
the standard deviation is the same as the approximate formula (8.4).
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8.2.2  Maximum Likelthood Inference

It turns out that the parametric bootstrap agrees with least squares in the
previous example because the model (8.5) has additive Gaussian errors. In
general, the parametric bootstrap agrees not with least squares but with
maximum likelihood, which we now review.

We begin by specifying a probability density or probability mass function
for our observations

zi ~ go(2). (8.8)

In this expression @ represents one or more unknown parameters that gov-
ern the distribution of Z. This is called a parametric model for Z. As an
example, if Z has a normal distribution with mean p and variance o2, then

0= (u,o%), (8.9)

and

1 C 1l )2 /o2

Maximum likelihood is based on the likelihood function, given by

N
L(6:2) = [ [ 90 (20). (8.11)

the probability of the observed data under the model gg. The likelihood is
defined only up to a positive multiplier, which we have taken to be one.
We think of L(0;Z) as a function of 6, with our data Z fixed.

Denote the logarithm of L(6;Z) by

N
> 0(6;z)
z]:Vl

= ) loggs(z), (8.12)
=1

060, 7)

which we will sometimes abbreviate as £(6). This expression is called the
log-likelihood, and each value £(0; z;) = log go(2;) is called a log-likelihood
component. The method of maximum likelihood chooses the value 6 = 0
to maximize ¢(6;Z).

The likelihood function can be used to assess the precision of 6. We need
a few more definitions. The score function is defined by

N
00;Z) = 005 2), (8.13)
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where £(0; z;) = 90(6; z;) /6. Assuming that the likelihood takes its maxi-
mum in the interior of the parameter space, ¢(6;Z) = 0. The information
matriz is

L PP z)
90067

i=1

1(0) = (8.14)

When I(0) is evaluated at 6 = 6, it is often called the observed information.
The Fisher information (or expected information) is

i(0) = Eo[1(0)]. (8.15)

Finally, let 6y denote the true value of 6.
A standard result says that the sampling distribution of the maximum
likelihood estimator has a limiting normal distribution

0 — N(60,i(60)71), (8.16)

as N — oo. Here we are independently sampling from g, (z). This suggests
that the sampling distribution of 8 may be approximated by

N(0,i(0)~") or N(0,1()~1), (8.17)

where 6 represents the maximum likelihood estimate from the observed
data. .
The corresponding estimates for the standard errors of §; are obtained

from
Vi) and 1(0);;". (8.18)

Confidence points for 6; can be constructed from either approximation
in (8.17). Such a confidence point has the form

éj — (=) \/i(é);jl or éj — (=) I(é);jl,

respectively, where z(1=%) is the 1 — o percentile of the standard normal
distribution. More accurate confidence intervals can be derived from the
likelihood function, by using the chi-squared approximation

2[6(0) — €(00)] ~ X2, (8.19)

where p is the number of components in 6. The resulting 1 — 2« confi-

dence interval is the set of all 6y such that 2[¢(d) — £(d)] < X2,

where X%(l_h) is the 1 — 2« percentile of the chi-squared distribution with

p degrees of freedom.
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Let’s return to our smoothing example to see what maximum likelihood
yields. The parameters are § = (3, 02). The log-likelihood is

(0 = N log o227 — 1 i(y' — h(z;)T B)? (8.20)
2 202 &= ' ' '
The maximum likelihood estimate is obtained by setting 9¢/98 = 0 and
ol/da? = 0, giving
B _ (HTH)_lHTy,
. 1 N
6% = N > (i — i),

which are the same as the usual estimates given in (8.2) and below (8.3).
The information matrix for § = (3,0?) is block-diagonal, and the block
corresponding to 3 is

(8.21)

I(3) = (H"H)/o?, (8.22)

so that the estimated variance (HTH)~162 agrees with the least squares
estimate (8.3).

8.2.8 Bootstrap versus Mazimum Likelihood

In essence the bootstrap is a computer implementation of nonparametric or
parametric maximum likelihood. The advantage of the bootstrap over the
maximum likelihood formula is that it allows us to compute maximum like-
lihood estimates of standard errors and other quantities in settings where
no formulas are available.

In our example, suppose that we adaptively choose by cross-validation
the number and position of the knots that define the B-splines, rather
than fix them in advance. Denote by A the collection of knots and their
positions. Then the standard errors and confidence bands should account
for the adaptive choice of A, but there is no way to do this analytically.
With the bootstrap, we compute the B-spline smooth with an adaptive
choice of knots for each bootstrap sample. The percentiles of the resulting
curves capture the variability from both the noise in the targets as well as
that from . In this particular example the confidence bands (not shown)
don’t look much different than the fixed A bands. But in other problems,
where more adaptation is used, this can be an important effect to capture.

8.3 DBayesian Methods

In the Bayesian approach to inference, we specify a sampling model Pr(Z|0)
(density or probability mass function) for our data given the parameters,
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and a prior distribution for the parameters Pr(f) reflecting our knowledge
about # before we see the data. We then compute the posterior distribution

Pr(Z|0) - Pr(0)

Pr012) = +51z/6) - Pr(a)ao’

(8.23)

which represents our updated knowledge about 6 after we see the data. To
understand this posterior distribution, one might draw samples from it or
summarize by computing its mean or mode. The Bayesian approach differs
from the standard (“frequentist”) method for inference in its use of a prior
distribution to express the uncertainty present before seeing the data, and
to allow the uncertainty remaining after seeing the data to be expressed in
the form of a posterior distribution.

The posterior distribution also provides the basis for predicting the values
of a future observation 2"V, via the predictive distribution:

Pr(z"V|Z) = /Pr(z“eww) - Pr(0|Z)d6. (8.24)

In contrast, the maximum likelihood approach would use Pr(z“ew|é),
the data density evaluated at the maximum likelihood estimate, to predict
future data. Unlike the predictive distribution (8.24), this does not account
for the uncertainty in estimating 6.

Let’s walk through the Bayesian approach in our smoothing example.
We start with the parametric model given by equation (8.5), and assume
for the moment that o2 is known. We assume that the observed feature
values x1,xs,...,x N are fixed, so that the randomness in the data comes
solely from y varying around its mean p(z).

The second ingredient we need is a prior distribution. Distributions on
functions are fairly complex entities: one approach is to use a Gaussian
process prior in which we specify the prior covariance between any two
function values pu(x) and p(z’) (Wahba, 1990; Neal, 1996).

Here we take a simpler route: by considering a finite B-spline basis for
w(x), we can instead provide a prior for the coefficients 3, and this implicitly
defines a prior for p(z). We choose a Gaussian prior centered at zero

B~ N(0,7X) (8.25)
with the choices of the prior correlation matrix 3 and variance 7 to be

discussed below. The implicit process prior for u(z) is hence Gaussian,
with covariance kernel

Kloa) = covlu(z), u(a)
= 7-h(z)TZh(2). (8.26)
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FIGURE 8.3. Smoothing example: Ten draws from the Gaussian prior distri-
bution for the function u(x).

The posterior distribution for 3 is also Gaussian, with mean and covariance

2 —1
E(8|Z) = (HTH + Uz—1> HTy,
T

. (8.27)
o2
cov(B|Z) = <HTH+ 21> o2,
T
with the corresponding posterior values for u(x),
o2 !
B(u(e)2) = hio)” (BT + T2 HTy,
T
(8.28)

covlu(x), u(z")|Z) = h(x)T (HTH + (:_22_1> ) h(z')o?.

How do we choose the prior correlation matrix 37 In some settings the
prior can be chosen from subject matter knowledge about the parameters.
Here we are willing to say the function p(z) should be smooth, and have
guaranteed this by expressing p in a smooth low-dimensional basis of B-
splines. Hence we can take the prior correlation matrix to be the identity
3 = I. When the number of basis functions is large, this might not be suf-
ficient, and additional smoothness can be enforced by imposing restrictions
on 3; this is exactly the case with smoothing splines (Section 5.8.1).

Figure 8.3 shows ten draws from the corresponding prior for u(x). To
generate posterior values of the function p(z), we generate values 3’ from its
posterior (8.27), giving corresponding posterior value p/(z) = ZI Bihj(x).
Ten such posterior curves are shown in Figure 8.4. Two different values
were used for the prior variance 7, 1 and 1000. Notice how similar the
right panel looks to the bootstrap distribution in the bottom left panel
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FIGURE 8.4. Smoothing example: Ten draws from the posterior distribution
for the function p(z), for two different values of the prior variance T. The purple
curves are the posterior means.

of Figure 8.2 on page 263. This similarity is no accident. As 7 — oo, the
posterior distribution (8.27) and the bootstrap distribution (8.7) coincide.
On the other hand, for 7 = 1, the posterior curves u(x) in the left panel
of Figure 8.4 are smoother than the bootstrap curves, because we have
imposed more prior weight on smoothness.

The distribution (8.25) with 7 — oo is called a noninformative prior for
0. In Gaussian models, maximum likelihood and parametric bootstrap anal-
yses tend to agree with Bayesian analyses that use a noninformative prior
for the free parameters. These tend to agree, because with a constant prior,
the posterior distribution is proportional to the likelihood. This correspon-
dence also extends to the nonparametric case, where the nonparametric
bootstrap approximates a noninformative Bayes analysis; Section 8.4 has
the details.

We have, however, done some things that are not proper from a Bayesian
point of view. We have used a noninformative (constant) prior for o2 and
replaced it with the maximum likelihood estimate 62 in the posterior. A
more standard Bayesian analysis would also put a prior on o (typically
g(o) x 1/0), calculate a joint posterior for p(xz) and o, and then integrate
out o, rather than just extract the maximum of the posterior distribution
(“MAP” estimate).
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8.4 Relationship Between the Bootstrap and

Bayesian Inference
v

Consider first a very simple example, in which we observe a single obser-
vation z from a normal distribution

2~ N(0,1). (8.29)

To carry out a Bayesian analysis for 6, we need to specify a prior. The
most convenient and common choice would be § ~ N (0, 7) giving posterior
distribution

z 1
9|ZNN<1+1/T’1+1/T>‘ (8:30)

Now the larger we take 7, the more concentrated the posterior becomes
around the maximum likelihood estimate 6 = z. In the limit as 7 — co we
obtain a noninformative (constant) prior, and the posterior distribution is

0lz ~ N(z,1). (8.31)

This is the same as a parametric bootstrap distribution in which we gen-
erate bootstrap values z* from the maximum likelihood estimate of the
sampling density N(z,1).

There are three ingredients that make this correspondence work:

1. The choice of noninformative prior for 6.

2. The dependence of the log-likelihood £(6;Z) on the data Z only
through the maximum likelihood estimate 6. Hence we can write the
log-likelihood as ¢(6;0).

3. The symmetry of the log-likelihood in 6 and 6, that is, 4(9;9) =
£(0;0) + constant.

Properties (2) and (3) essentially only hold for the Gaussian distribu-
tion. However, they also hold approximately for the multinomial distribu-
tion, leading to a correspondence between the nonparametric bootstrap
and Bayes inference, which we outline next.

Assume that we have a discrete sample space with L categories. Let w; be
the probability that a sample point falls in category j, and w; the observed
proportion in category j. Let w = (w1, wa,...,wp),w = (W, e, ...,Wr).
Denote our estimator by S(w); take as a prior distribution for w a sym-
metric Dirichlet distribution with parameter a:

w ~ Dig(al), (8.32)
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that is, the prior probability mass function is proportional to H13L:1 w;@kl
Then the posterior density of w is

w ~ Dig(al + Nib), (8.33)

where N is the sample size. Letting a — 0 to obtain a noninformative prior
gives

w ~ Diy (N). (8.34)

Now the bootstrap distribution, obtained by sampling with replacement
from the data, can be expressed as sampling the category proportions from
a multinomial distribution. Specifically,

N* ~ Mult(N, i), (8.35)

where Mult(N, ) denotes a multinomial distribution, having probability

mass function ( Nibs N II wévw‘ . This distribution is similar to the pos-
1

,...,Nmz)
terior distribution above, having the same support, same mean, and nearly
the same covariance matrix. Hence the bootstrap distribution of S(w*) will
closely approximate the posterior distribution of S(w).

In this sense, the bootstrap distribution represents an (approximate)
nonparametric, noninformative posterior distribution for our parameter.
But this bootstrap distribution is obtained painlessly—without having to
formally specify a prior and without having to sample from the posterior
distribution. Hence we might think of the bootstrap distribution as a “poor
man’s” Bayes posterior. By perturbing the data, the bootstrap approxi-
mates the Bayesian effect of perturbing the parameters, and is typically
much simpler to carry out.

8.5 The EM Algorithm

The EM algorithm is a popular tool for simplifying difficult maximum
likelihood problems. We first describe it in the context of a simple mixture
model.

8.5.1 Two-Component Mixture Model

In this section we describe a simple mixture model for density estimation,
and the associated EM algorithm for carrying out maximum likelihood
estimation. This has a natural connection to Gibbs sampling methods for
Bayesian inference. Mixture models are discussed and demonstrated in sev-
eral other parts of the book, in particular Sections 6.8, 12.7 and 13.2.3.

The left panel of Figure 8.5 shows a histogram of the 20 fictitious data
points in Table 8.1.
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FIGURE 8.5. Mizture example. (Left panel:) Histogram of data. (Right panel:)
Mazimum likelihood fit of Gaussian densities (solid red) and responsibility (dotted
green) of the left component density for observation y, as a function of y.

TABLE 8.1. Twenty fictitious data points used in the two-component mixture
ezample in Figure 8.5.

-0.39 0.12 094 1.67 1.76 244 3.72 428 492 5.53
0.06 048 1.01 1.68 1.80 3.25 4.12 4.60 5.28 6.22

We would like to model the density of the data points, and due to the
apparent bi-modality, a Gaussian distribution would not be appropriate.
There seems to be two separate underlying regimes, so instead we model
Y as a mixture of two normal distributions:

i~ N(:ulv U%)’

Yo ~ N(usod), (8.36)

Y = (1-A)-Y1+A-Ys,
where A € {0,1} with Pr(A = 1) = 7. This generative representation is
explicit: generate a A € {0,1} with probability 7, and then depending on
the outcome, deliver either Y7 or Ya. Let ¢g(z) denote the normal density
with parameters 6 = (u,0?). Then the density of Y is

gy (y) = (L =m)¢o, (y) + 7o, (y). (8.37)

Now suppose we wish to fit this model to the data in Figure 8.5 by maxi-
mum likelihood. The parameters are

6= (7r,01792) = (W,ul,U%,‘uQ,(f%). (838)
The log-likelihood based on the N training cases is

N
00;Z) = log[(1 — m) g, (yi) + mba, ()] (8.39)

i=1
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Direct maximization of ¢(6;Z) is quite difficult numerically, because of
the sum of terms inside the logarithm. There is, however, a simpler ap-
proach. We consider unobserved latent variables A; taking values 0 or 1 as
in (8.36): if A; =1 then Y; comes from model 2, otherwise it comes from
model 1. Suppose we knew the values of the A;’s. Then the log-likelihood
would be

N
bo(0;Z2,A) = Z [(1 — Aj)log ¢g, (yi) + Ailog dg, (vi)]
N
+> (1= Aj)log(1 — ) + Ajlog 7], (8.40)

and the maximum likelihood estimates of ;1 and o7 would be the sample
mean and variance for those data with A; = 0, and similarly those for ps
and o2 would be the sample mean and variance of the data with A; = 1.
The estimate of m would be the proportion of A; = 1.

Since the values of the A;’s are actually unknown, we proceed in an
iterative fashion, substituting for each A; in (8.40) its expected value

7:(6) = E(Ai]0.Z) = Pr(A; = 1/, 2), (8.41)

also called the responsibility of model 2 for observation i. We use a proce-
dure called the EM algorithm, given in Algorithm 8.1 for the special case of
Gaussian mixtures. In the expectation step, we do a soft assignment of each
observation to each model: the current estimates of the parameters are used
to assign responsibilities according to the relative density of the training
points under each model. In the mazimization step, these responsibilities
are used in weighted maximum-likelihood fits to update the estimates of
the parameters.

A good way to construct initial guesses for fi; and fio is simply to choose
two of the y; at random. Both 67 and 63 can be set equal to the overall
sample variance Zi\il(yl —#)?/N. The mixing proportion 7 can be started
at the value 0.5.

Note that the actual maximizer of the likelihood occurs when we put a
spike of infinite height at any one data point, that is, ji; = y; for some
i and 62 = 0. This gives infinite likelihood, but is not a useful solution.
Hence we are actually looking for a good local maximum of the likelihood,
one for which 6%?,62 > 0. To further complicate matters, there can be
more than one local maximum having 67,553 > 0. In our example, we
ran the EM algorithm with a number of different initial guesses for the
parameters, all having 67 > 0.5, and chose the run that gave us the highest
maximized likelihood. Figure 8.6 shows the progress of the EM algorithm in
maximizing the log-likelihood. Table 8.2 shows & = ) . 4; /N, the maximum
likelihood estimate of the proportion of observations in class 2, at selected
iterations of the EM procedure.
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Algorithm 8.1 EM Algorithm for Two-component Gaussian Mizture.

1. Take initial guesses for the parameters fi1, 67, iz, 53,7 (see text).

2. Fxpectation Step: compute the responsibilities

X Tog, (i)
Yi =

1=1,2

(1= 7)og, (yi) + 7, (i) :2,..., N (8.42)

3. Mazimization Step: compute the weighted means and variances:

PIRD DAC L TR 0/ e 1 [ Tt 1V
il (=) ZN:( — %)
dy = T e S il = )
Zilil% ’ o E 1% 7

and the mixing probability 7 = Zf\; 4i/N.

4. Tterate steps 2 and 3 until convergence.

TABLE 8.2. Selected iterations of the EM algorithm for mixture example.

Iteration T
1 0.485

5 0.493

10 0.523

15 0.544

20 0.546

The final maximum likelihood estimates are

i = 4.62, 61 =0.87,
fia = 1.06, 62 =0.77,
7 = 0.546.

The right panel of Figure 8.5 shows the estimated Gaussian mixture density
from this procedure (solid red curve), along with the responsibilities (dotted
green curve). Note that mixtures are also useful for supervised learning; in
Section 6.7 we show how the Gaussian mixture model leads to a version of
radial basis functions.
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FIGURE 8.6. EM algorithm: observed data log-likelihood as a function of the
iteration number.

8.5.2 The EM Algorithm in General Vi

The above procedure is an example of the EM (or Baum—Welch) algorithm
for maximizing likelihoods in certain classes of problems. These problems
are ones for which maximization of the likelihood is difficult, but made
easier by enlarging the sample with latent (unobserved) data. This is called
data augmentation. Here the latent data are the model memberships A;.
In other problems, the latent data are actual data that should have been
observed but are missing.

Algorithm 8.2 gives the general formulation of the EM algorithm. Our
observed data is Z, having log-likelihood ¢(0;Z) depending on parameters
0. The latent or missing data is Z™, so that the complete data is T =
(Z,Z™) with log-likelihood ¢4(0;T), ¢y based on the complete density. In
the mixture problem (Z,Z™) = (y,A), and £o(0; T) is given in (8.40).

In our mixture example, E(¢y(¢’; T)|Z, é(j)) is simply (8.40) with the A;
replaced by the responsibilities 'Sli(é)7 and the maximizers in step 3 are just
weighted means and variances.

We now give an explanation of why the EM algorithm works in general.

Since

m n_ Pr(Z™,Z]0")
Pr(Z™|Z,0") = 7Pr(Z|9’) , (8.44)
we can write
N Pr(T|0")
PrZl) = 5rzmiz. 6y (845)

In terms of log-likelihoods, we have £(0'; Z) = £o(6'; T)—£1(0'; Z™|Z), where
{1 is based on the conditional density Pr(Z™|Z,¢’). Taking conditional
expectations with respect to the distribution of T'|Z governed by parameter
0 gives

(02) = E[(8;T)|Z,0] - E[t:(0;2™|2)|Z, 0]
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Algorithm 8.2 The EM Algorithm.

1. Start with initial guesses for the parameters 6()
2. Ezpectation Step: at the jth step, compute
Q(O',09)) = E(ty(0'; T)|Z,01) (8.43)
as a function of the dummy argument ¢’.

3. Mazimization Step: determine the new estimate 60U+ as the maxi-
mizer of Q(6’,0Y)) over ¢’

4. Tterate steps 2 and 3 until convergence.

= Q(0,0)— R(¢,0). (8.46)

In the M step, the EM algorithm maximizes Q(6’,0) over ¢, rather than
the actual objective function £(6’; Z). Why does it succeed in maximizing
£(0";Z)? Note that R(6*, 0) is the expectation of a log-likelihood of a density
(indexed by 6*), with respect to the same density indexed by 6, and hence
(by Jensen’s inequality) is maximized as a function of 0%, when 6* = 0 (see
Exercise 8.1). So if " maximizes Q(6',0), we see that

00" Z) - 00;Z2) = [Q6',0) —Q0,0)] — [R(0',0) — R(0,0)]
> 0. (8.47)

Hence the EM iteration never decreases the log-likelihood.

This argument also makes it clear that a full maximization in the M
step is not necessary: we need only to find a value 6U+D) so that Qo é(j))
increases as a function of the first argument, that is, Q(é(j“),é(j)) >
QA9 0. Such procedures are called GEM (generalized EM) algorithms.
The EM algorithm can also be viewed as a minorization procedure: see
Exercise 8.7.

QJV.O
. . . . . . 0
8.5.8 EM as a Maximization—Maximization Procedure 4
Here is a different view of the EM procedure, as a joint maximization
algorithm. Consider the function

F(8', P) = Epllo(0'sT)] — Epllog P(Z™)]. (8.48)

Here P(Z’i’) is any distribution over the latent data Z™. In the mixture
example, P(Z™) comprises the set of probabilities v; = Pr(4A; = 1/0,Z).
Note that F' evaluated at P(Z™) = Pr(Z™|Z,¢’), is the log-likelihood of
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FIGURE 8.7. Mazimization-mazimization view of the EM algorithm. Shown
are the contours of the (augmented) observed data log-likelihood F(6',P). The
FE step is equivalent to maximizing the log-likelihood over the parameters of the
latent data distribution. The M step mazimizes it over the parameters of the
log-likelihood. The red curve corresponds to the observed data log-likelihood, a
profile obtained by mazimizing F (0, ]5) for each value of 0.

the observed data, from (8.46)!. The function F expands the domain of
the log-likelihood, to facilitate its maximization.

The EM algorithm can be viewed as a joint maximization method for F’
over ' and P(Z™), by fixing one argument and maximizing over the other.
The maximizer over P(Z™) for fixed # can be shown to be

P(Z™) = Pr(Z™|Z,0') (8.49)

(Exercise 8.2). This is the distribution computed by the F step, for example,
(8.42) in the mixture example. In the M step, we maximize F (¢, P) over ¢’
with P fixed: this is the same as maximizing the first term Es[lo(0";T)|Z, 0]
since the second term does not involve ¢’.

Finally, since F(¢’, P) and the observed data log-likelihood agree when
P(Z™) = Pr(Z™|Z,0’), maximization of the former accomplishes maxi-
mization of the latter. Figure 8.7 shows a schematic view of this process.
This view of the EM algorithm leads to alternative maximization proce-

1 (8.46) holds for all 4, including § = ¢’.
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Algorithm 8.3 Gibbs Sampler.

1. Take some initial values U,io),k =12,....K.
2. Repeat fort=1,2,...,.:
For k =1,2,..., K generate U,gt) from
) pr(t t t—1 t—1
Pr(UPIUM, . UD oD U,

3. Continue step 2 until the joint distribution of (Ul(t), UQ(t)7 .. .7UI(§))
does not change.

dures. For example, one does not need to maximize with respect to all of
the latent data parameters at once, but could instead maximize over one
of them at a time, alternating with the M step.

8.6 MCMC for Sampling from the Posterior

Having defined a Bayesian model, one would like to draw samples from
the resulting posterior distribution, in order to make inferences about the
parameters. Except for simple models, this is often a difficult computa-
tional problem. In this section we discuss the Markov chain Monte Carlo
(MCMC) approach to posterior sampling. We will see that Gibbs sampling,
an MCMC procedure, is closely related to the EM algorithm: the main dif-
ference is that it samples from the conditional distributions rather than
maximizing over them.

Consider first the following abstract problem. We have random variables
Uy,Us, ..., Uk and we wish to draw a sample from their joint distribution.
Suppose this is difficult to do, but it is easy to simulate from the conditional
distributions Pr(U;|Uq,Us, ..., Uj—1,Uj41,...,Uk), j = 1,2,..., K. The
Gibbs sampling procedure alternatively simulates from each of these distri-
butions and when the process stabilizes, provides a sample from the desired
joint distribution. The procedure is defined in Algorithm 8.3.

Under regularity conditions it can be shown that this procedure even-
tually stabilizes, and the resulting random variables are indeed a sample
from the joint distribution of Uy, Us,...,Uk. This occurs despite the fact
that the samples (Ul(t), Ug(t)7 LU I(?) are clearly not independent for dif-
ferent ¢t. More formally, Gibbs sampling produces a Markov chain whose
stationary distribution is the true joint distribution, and hence the term
“Markov chain Monte Carlo.” It is not surprising that the true joint dis-
tribution is stationary under this process, as the successive steps leave the
marginal distributions of the Uj’s unchanged.
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Note that we don’t need to know the explicit form of the conditional
densities, but just need to be able to sample from them. After the procedure
reaches stationarity, the marginal density of any subset of the variables
can be approximated by a density estimate applied to the sample values.
However if the explicit form of the conditional density Pr(Uy,|Us, ¢ # k)
is available, a better estimate of say the marginal density of Uy can be
obtained from (Exercise 8.3):

M
Pry, (u) = m ;Pr(uwg“,e k). (8.50)

Here we have averaged over the last M — m + 1 members of the sequence,
to allow for an initial “burn-in” period before stationarity is reached.

Now getting back to Bayesian inference, our goal is to draw a sample from
the joint posterior of the parameters given the data Z. Gibbs sampling will
be helpful if it is easy to sample from the conditional distribution of each
parameter given the other parameters and Z. An example—the Gaussian
mixture problem—is detailed next.

There is a close connection between Gibbs sampling from a posterior and
the EM algorithm in exponential family models. The key is to consider the
latent data Z™ from the EM procedure to be another parameter for the
Gibbs sampler. To make this explicit for the Gaussian mixture problem,
we take our parameters to be (6,Z™). For simplicity we fix the variances
0?,03 and mixing proportion 7 at their maximum likelihood values so that
the only unknown parameters in 6 are the means pu; and ps. The Gibbs
sampler for the mixture problem is given in Algorithm 8.4. We see that
steps 2(a) and 2(b) are the same as the E and M steps of the EM pro-
cedure, except that we sample rather than maximize. In step 2(a), rather
than compute the maximum likelihood responsibilities v; = E(A;|6,Z),
the Gibbs sampling procedure simulates the latent data A; from the distri-
butions Pr(A;|0,Z). In step 2(b), rather than compute the maximizers of
the posterior Pr(u, po, A|Z) we simulate from the conditional distribution
Pr(pu, MQ‘A7 Z).

Figure 8.8 shows 200 iterations of Gibbs sampling, with the mean param-
eters py (lower) and ps (upper) shown in the left panel, and the proportion
of class 2 observations ), A; /N on the right. Horizontal broken lines have
been drawn at the maximum likelihood estimate values /i1, fip and >, 4; /N
in each case. The values seem to stabilize quite quickly, and are distributed
evenly around the maximum likelihood values.

The above mixture model was simplified, in order to make the clear
connection between Gibbs sampling and the EM algorithm. More realisti-
cally, one would put a prior distribution on the variances 0%, 03 and mixing
proportion 7, and include separate Gibbs sampling steps in which we sam-
ple from their posterior distributions, conditional on the other parameters.
One can also incorporate proper (informative) priors for the mean param-
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Algorithm 8.4 Gibbs sampling for mixtures.

1. Take some initial values §(®) = (ugo), uéo)).

2. Repeat fort =1,2,...,.

(a) For ¢ = 1,2,..., N generate Agt) € {0,1} with Pr(AEt) =1)=
4:(0®)), from equation (8.42).

(b) Set
b - Xn-a") .y
S —al)
(0 — Zz:l Agt) Yi
H2 Z.il A(t) )

and generate ugt) ~ N(ji1,6%) and ,ugt) ~ N(fiz, 62).

3. Continue step 2 until the joint distribution of (A(t), p(lt), p(;)) doesn’t

change
.
~
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FIGURE 8.8. Mixture example. (Left panel:) 200 values of the two mean param-
eters from Gibbs sampling; horizontal lines are drawn at the maximum likelihood
estimates fi1, fiz. (Right panel:) Proportion of values with A; = 1, for each of the
200 Gibbs sampling iterations; a horizontal line is drawn at ), 4 /N.
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eters. These priors must not be improper as this will lead to a degenerate
posterior, with all the mixing weight on one component.

Gibbs sampling is just one of a number of recently developed procedures
for sampling from posterior distributions. It uses conditional sampling of
each parameter given the rest, and is useful when the structure of the prob-
lem makes this sampling easy to carry out. Other methods do not require
such structure, for example the Metropolis—Hastings algorithm. These and
other computational Bayesian methods have been applied to sophisticated
learning algorithms such as Gaussian process models and neural networks.
Details may be found in the references given in the Bibliographic Notes at
the end of this chapter.

8.7 DBagging

Earlier we introduced the bootstrap as a way of assessing the accuracy of a
parameter estimate or a prediction. Here we show how to use the bootstrap
to improve the estimate or prediction itself. In Section 8.4 we investigated
the relationship between the bootstrap and Bayes approaches, and found
that the bootstrap mean is approximately a posterior average. Bagging
further exploits this connection.

Consider first the regression problem. Suppose we fit a model to our
training data Z = {(x1,91), (x2,¥2),...,(xN,yn)}, obtaining the predic-
tion f (x) at input z. Bootstrap aggregation or bagging averages this predic-
tion over a collection of bootstrap samples, thereby reducing its variance.
For each bootstrap sample Z**, b = 1,2,..., B, we fit our model, giving
prediction f**(z). The bagging estimate is defined by

R 1 Z Fxb
fbag(x):EZf (z). (8.51)
b=1

Denote by P the empirical distribution putting equal probability 1/N on
each of the data points (z;,y;). In fact the “true” bagging estimate is
defined by Eﬁf*(a:), where Z* = {(zF, y7), (x5, y3),. ... (&, yy)} and cach
(z¥,yF) ~ P. Expression (8.51) is a Monte Carlo estimate of the true
bagging estimate, approaching it as B — oc.

The bagged estimate (8.51) will differ from the original estimate f(z)
only when the latter is a nonlinear or adaptive function of the data. For
example, to bag the B-spline smooth of Section 8.2.1, we average the curves
in the bottom left panel of Figure 8.2 at each value of x. The B-spline
smoother is linear in the data if we fix the inputs; hence if we sample using
the parametric bootstrap in equation (8.6), then fbag(x) — f(x)as B — oo
(Exercise 8.4). Hence bagging just reproduces the original smooth in the
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top left panel of Figure 8.2. The same is approximately true if we were to
bag using the nonparametric bootstrap.

A more interesting example is a regression tree, where f () denotes the
tree’s prediction at input vector x (regression trees are described in Chap-
ter 9). Each bootstrap tree will typically involve different features than the
original, and might have a different number of terminal nodes. The bagged
estimate is the average prediction at = from these B trees.

Now suppose our tree produces a classifier G(x) for a K-class response.
Here it is useful to consider an underlying indicator-vector function f (z),
with value a single one and K — 1 zeroes, such that G(z) = arg max;, f(x).
Then the bagged estimate fiag(z) (8.51) is a K-vector [p(z),pa(z), ...,
pi (z)], with pg(z) equal to the proportion of trees predicting class k at x.
The bagged classifier selects the class with the most “votes” from the B
trees, G’bag(x) = arg maxy fbag(x).

Often we require the class-probability estimates at x, rather than the
classifications themselves. It is tempting to treat the voting proportions
pi(x) as estimates of these probabilities. A simple two-class example shows
that they fail in this regard. Suppose the true probability of class 1 at x is
0.75, and each of the bagged classifiers accurately predict a 1. Then p;(z) =
1, which is incorrect. For many classifiers é(ac), however, there is already
an underlying function f () that estimates the class probabilities at x (for
trees, the class proportions in the terminal node). An alternative bagging
strategy is to average these instead, rather than the vote indicator vectors.
Not only does this produce improved estimates of the class probabilities,
but it also tends to produce bagged classifiers with lower variance, especially
for small B (see Figure 8.10 in the next example).

8.7.1 FExample: Trees with Simulated Data

We generated a sample of size N = 30, with two classes and p = 5 features,
each having a standard Gaussian distribution with pairwise correlation
0.95. The response Y was generated according to Pr(Y = 1|z; < 0.5) = 0.2,
Pr(Y = 1|z; > 0.5) = 0.8. The Bayes error is 0.2. A test sample of size 2000
was also generated from the same population. We fit classification trees to
the training sample and to each of 200 bootstrap samples (classification
trees are described in Chapter 9). No pruning was used. Figure 8.9 shows
the original tree and eleven bootstrap trees. Notice how the trees are all
different, with different splitting features and cutpoints. The test error for
the original tree and the bagged tree is shown in Figure 8.10. In this ex-
ample the trees have high variance due to the correlation in the predictors.
Bagging succeeds in smoothing out this variance and hence reducing the
test error.

Bagging can dramatically reduce the variance of unstable procedures
like trees, leading to improved prediction. A simple argument shows why
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FIGURE 8.9. Bagging trees on simulated dataset. The top left panel shows the
original tree. Eleven trees grown on bootstrap samples are shown. For each tree,
the top split is annotated.
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FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.

bagging helps under squared-error loss, in short because averaging reduces
variance and leaves bias unchanged.

Assume our training observations (z;,y;), ¢ = 1,..., N are indepen-
dently drawn from a distribution P, and consider the ideal aggregate es-
timator fue(z) = Epf*(z). Here z is fixed and the bootstrap dataset Z*
consists of observations x},y’, i = 1,2,..., N sampled from P. Note that
fag(z) is a bagging estimate, drawing bootstrap samples from the actual
population P rather than the data. It is not an estimate that we can use
in practice, but is convenient for analysis. We can write

EpY — f*(2)]> = EplY — fag(2) + fag(a) — f*(2))?
Ep[Y — fag(@)]* + Ep[f*(x) — fag(2))?
> EplY — fag(2)]? (8.52)

The extra error on the right-hand side comes from the variance of f*(z)
around its mean faq(x). Therefore true population aggregation never in-
creases mean squared error. This suggests that bagging—drawing samples
from the training data— will often decrease mean-squared error.

The above argument does not hold for classification under 0-1 loss, be-
cause of the nonadditivity of bias and variance. In that setting, bagging a
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good classifier can make it better, but bagging a bad classifier can make it
worse. Here is a simple example, using a randomized rule. Suppose ¥ = 1
for all z, and the classifier G(z) predicts Y = 1 (for all z) with proba-
bility 0.4 and predicts Y = 0 (for all z) with probability 0.6. Then the
misclassification error of G (x) is 0.6 but that of the bagged classifier is 1.0.

For classification we can understand the bagging effect in terms of a
consensus of independent weak learners (Dietterich, 2000a). Let the Bayes
optimal decision at x be G(z) = 1 in a two-class example. Suppose each
of the weak learners G have an error-rate e, = e < 0.5, and let Sy(z) =

Zszl I(G{(x) = 1) be the consensus vote for class 1. Since the weak learn-
ers are assumed to be independent, Si(z) ~ Bin(B,1 — e), and Pr(S; >
B/2) — 1 as B gets large. This concept has been popularized outside of
statistics as the “Wisdom of Crowds” (Surowiecki, 2004) — the collective
knowledge of a diverse and independent body of people typically exceeds
the knowledge of any single individual, and can be harnessed by voting.
Of course, the main caveat here is “independent,” and bagged trees are
not. Figure 8.11 illustrates the power of a consensus vote in a simulated
example, where only 30% of the voters have some knowledge.

In Chapter 15 we see how random forests improve on bagging by reducing
the correlation between the sampled trees.

Note that when we bag a model, any simple structure in the model is
lost. As an example, a bagged tree is no longer a tree. For interpretation
of the model this is clearly a drawback. More stable procedures like near-
est neighbors are typically not affected much by bagging. Unfortunately,
the unstable models most helped by bagging are unstable because of the
emphasis on interpretability, and this is lost in the bagging process.

Figure 8.12 shows an example where bagging doesn’t help. The 100 data
points shown have two features and two classes, separated by the gray
linear boundary x; + o2 = 1. We choose as our classifier é(m) a single
axis-oriented split, choosing the split along either x; or x5 that produces
the largest decrease in training misclassification error.

The decision boundary obtained from bagging the 0-1 decision rule over
B = 50 bootstrap samples is shown by the blue curve in the left panel.
It does a poor job of capturing the true boundary. The single split rule,
derived from the training data, splits near 0 (the middle of the range of x4
or xs), and hence has little contribution away from the center. Averaging
the probabilities rather than the classifications does not help here. Bagging
estimates the expected class probabilities from the single split rule, that is,
averaged over many replications. Note that the expected class probabilities
computed by bagging cannot be realized on any single replication, in the
same way that a woman cannot have 2.4 children. In this sense, bagging
increases somewhat the space of models of the individual base classifier.
However, it doesn’t help in this and many other examples where a greater
enlargement of the model class is needed. “Boosting” is a way of doing this



8.7 Bagging 287

Wisdom of Crowds

o
= | ® Consensus Eiiii,,,lfg
> _—
® Individual . /E
- /
- _—
® o /l
o L
— / |
s T -
3 © / 1
3]
£ N
IS - - T
o /ﬁ - et
3 < B e
g 1 1 | _e—e1
d Le—e— 1
~ 4 1 1 L
o 4
T T T T
0.25 0.50 0.75 1.00

P - Probability of Informed Person Being Correct

FIGURE 8.11. Simulated academy awards voting. 50 members vote in 10 cat-
egories, each with 4 mominations. For any category, only 15 wvoters have some
knowledge, represented by their probability of selecting the “correct” candidate in
that category (so P = 0.25 means they have no knowledge). For each category, the
15 experts are chosen at random from the 50. Results show the expected correct
(based on 50 simulations) for the consensus, as well as for the indiwviduals. The
error bars indicate one standard deviation. We see, for example, that if the 15
informed for a category have a 50% chance of selecting the correct candidate, the
consensus doubles the expected performance of an individual.
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FIGURE 8.12. Data with two features and two classes, separated by a linear
boundary. (Left panel:) Decision boundary estimated from bagging the decision
rule from a single split, axis-oriented classifier. (Right panel:) Decision boundary
from boosting the decision rule of the same classifier. The test error rates are
0.166, and 0.065, respectively. Boosting is described in Chapter 10.

and is described in Chapter 10. The decision boundary in the right panel is
the result of the boosting procedure, and it roughly captures the diagonal
boundary.

8.8 Model Averaging and Stacking

In Section 8.4 we viewed bootstrap values of an estimator as approximate
posterior values of a corresponding parameter, from a kind of nonparamet-
ric Bayesian analysis. Viewed in this way, the bagged estimate (8.51) is
an approximate posterior Bayesian mean. In contrast, the training sample
estimate f () corresponds to the mode of the posterior. Since the posterior
mean (not mode) minimizes squared-error loss, it is not surprising that
bagging can often reduce mean squared-error.

Here we discuss Bayesian model averaging more generally. We have a
set of candidate models M,,, m = 1,..., M for our training set Z. These
models may be of the same type with different parameter values (e.g.,
subsets in linear regression), or different models for the same task (e.g.,
neural networks and regression trees).

Suppose ( is some quantity of interest, for example, a prediction f(x) at
some fixed feature value x. The posterior distribution of ( is

M
Pr(¢|Z) = Y Pr((|Mum, Z)Pr(M,,|Z), (8.53)

m=1
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with posterior mean

M
E(¢|Z) = > E((| Mo, Z)Pr(M,,|Z). (8.54)

m=1

This Bayesian prediction is a weighted average of the individual predictions,
with weights proportional to the posterior probability of each model.

This formulation leads to a number of different model-averaging strate-
gies. Committee methods take a simple unweighted average of the predic-
tions from each model, essentially giving equal probability to each model.
More ambitiously, the development in Section 7.7 shows the BIC criterion
can be used to estimate posterior model probabilities. This is applicable
in cases where the different models arise from the same parametric model,
with different parameter values. The BIC gives weight to each model de-
pending on how well it fits and how many parameters it uses. One can also
carry out the Bayesian recipe in full. If each model M,, has parameters
0, We write

Pr(M,|Z) < Pr(M,,)- Pr(Z|M,,)
o Pr(Mm)-/Pr(Z|9m,Mm)Pr(0m|Mm)d9m.
(8.55)

In principle one can specify priors Pr(6,,|M,,) and numerically com-
pute the posterior probabilities from (8.55), to be used as model-averaging
weights. However, we have seen no real evidence that this is worth all of
the effort, relative to the much simpler BIC approximation.

How can we approach model averaging from a frequentist viewpoint?

Given predictions f; (2), fg(ac), . fM(x), under squared-error loss, we can
seek the weights w = (wy,ws, ..., wys) such that
M R )
w = argmin Ep [Y — Z wmfm(m)} . (8.56)
w m=1

Here the input value z is fixed and the N observations in the dataset Z (and
the target Y) are distributed according to P. The solution is the population
linear regression of Y on F(x)T = [fi(z), fa(), ..., far(2)]:

W = Ep[F(2)F(x)T] 'Ep|F(z)Y]. (8.57)

Now the full regression has smaller error than any single model
M R 2 R 5
Y =3 dmfule)| <Ep [Y - fm(x)} Vm (8.58)

m=1

Ep

so combining models never makes things worse, at the population level.
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Of course the population linear regression (8.57) is not available, and it
is natural to replace it with the linear regression over the training set. But
there are simple examples where this does not work well. For example, if
fm(z), m = 1,2,..., M represent the prediction from the best subset of
inputs of size m among M total inputs, then linear regression would put all
of the weight on the largest model, that is, wy; = 1, W, =0, m < M. The
problem is that we have not put each of the models on the same footing
by taking into account their complexity (the number of inputs m in this
example).

Stacked generalization, or stacking, is a way of doing this. Let f;j(az)
be the prediction at x, using model m, applied to the dataset with the
tth training observation removed. The stacking estimate of the weights is
obtained from the least squares linear regression of y; on f;li(:vi), m =
1,2,..., M. In detail the stacking weights are given by

N M - 2
W** = argmin E [yz - E wmf,;’(xi)] . (8.59)
Y=l m=1

The final prediction is »_ @5 Am(as) By using the cross-validated pre-
dictions fn;i(x), stacking avoids giving unfairly high weight to models with
higher complexity. Better results can be obtained by restricting the weights
to be nonnegative, and to sum to 1. This seems like a reasonable restriction
if we interpret the weights as posterior model probabilities as in equation
(8.54), and it leads to a tractable quadratic programming problem.

There is a close connection between stacking and model selection via
leave-one-out cross-validation (Section 7.10). If we restrict the minimization
in (8.59) to weight vectors w that have one unit weight and the rest zero,
this leads to a model choice m with smallest leave-one-out cross-validation
error. Rather than choose a single model, stacking combines them with
estimated optimal weights. This will often lead to better prediction, but
less interpretability than the choice of only one of the M models.

The stacking idea is actually more general than described above. One
can use any learning method, not just linear regression, to combine the
models as in (8.59); the weights could also depend on the input location
x. In this way, learning methods are “stacked” on top of one another, to
improve prediction performance.

8.9 Stochastic Search: Bumping

The final method described in this chapter does not involve averaging or
combining models, but rather is a technique for finding a better single
model. Bumping uses bootstrap sampling to move randomly through model
space. For problems where fitting method finds many local minima, bump-
ing can help the method to avoid getting stuck in poor solutions.
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Regular 4-Node Tree Bumped 4-Node Tree

FIGURE 8.13. Data with two features and two classes (blue and orange), dis-
playing a pure interaction. The left panel shows the partition found by three splits
of a standard, greedy, tree-growing algorithm. The vertical grey line near the left
edge is the first split, and the broken lines are the two subsequent splits. The al-
gorithm has no idea where to make a good initial split, and makes a poor choice.
The right panel shows the near-optimal splits found by bumping the tree-growing
algorithm 20 times.

As in bagging, we draw bootstrap samples and fit a model to each. But
rather than average the predictions, we choose the model estimated from a
bootstrap sample that best fits the training data. In detail, we draw boot-
strap samples Z*',...,Z*P and fit our model to each, giving predictions
f*b(x), b =1,2,...,B at input point z. We then choose the model that
produces the smallest prediction error, averaged over the original training
set. For squared error, for example, we choose the model obtained from
bootstrap sample 13, where

N
b= arg mbin;[yi e ACDI (8.60)

The corresponding model predictions are f*b(m). By convention we also
include the original training sample in the set of bootstrap samples, so that
the method is free to pick the original model if it has the lowest training
error.

By perturbing the data, bumping tries to move the fitting procedure
around to good areas of model space. For example, if a few data points are
causing the procedure to find a poor solution, any bootstrap sample that
omits those data points should procedure a better solution.

For another example, consider the classification data in Figure 8.13, the
notorious ezxclusive or (XOR) problem. There are two classes (blue and
orange) and two input features, with the features exhibiting a pure inter-
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action. By splitting the data at 27 = 0 and then splitting each resulting
strata at xo = 0, (or vice versa) a tree-based classifier could achieve per-
fect discrimination. However, the greedy, short-sighted CART algorithm
(Section 9.2) tries to find the best split on either feature, and then splits
the resulting strata. Because of the balanced nature of the data, all initial
splits on x1 or x5 appear to be useless, and the procedure essentially gener-
ates a random split at the top level. The actual split found for these data is
shown in the left panel of Figure 8.13. By bootstrap sampling from the data,
bumping breaks the balance in the classes, and with a reasonable number
of bootstrap samples (here 20), it will by chance produce at least one tree
with initial split near either z; = 0 or x5 = 0. Using just 20 bootstrap
samples, bumping found the near optimal splits shown in the right panel
of Figure 8.13. This shortcoming of the greedy tree-growing algorithm is
exacerbated if we add a number of noise features that are independent of
the class label. Then the tree-growing algorithm cannot distinguish z; or
2o from the others, and gets seriously lost.

Since bumping compares different models on the training data, one must
ensure that the models have roughly the same complexity. In the case of
trees, this would mean growing trees with the same number of terminal
nodes on each bootstrap sample. Bumping can also help in problems where
it is difficult to optimize the fitting criterion, perhaps because of a lack of
smoothness. The trick is to optimize a different, more convenient criterion
over the bootstrap samples, and then choose the model producing the best
results for the desired criterion on the training sample.

Bibliographic Notes

There are many books on classical statistical inference: Cox and Hink-
ley (1974) and Silvey (1975) give nontechnical accounts. The bootstrap
is due to Efron (1979) and is described more fully in Efron and Tibshi-
rani (1993) and Hall (1992). A good modern book on Bayesian inference
is Gelman et al. (1995). A lucid account of the application of Bayesian
methods to neural networks is given in Neal (1996). The statistical appli-
cation of Gibbs sampling is due to Geman and Geman (1984), and Gelfand
and Smith (1990), with related work by Tanner and Wong (1987). Markov
chain Monte Carlo methods, including Gibbs sampling and the Metropolis—
Hastings algorithm, are discussed in Spiegelhalter et al. (1996). The EM
algorithm is due to Dempster et al. (1977); as the discussants in that pa-
per make clear, there was much related, earlier work. The view of EM as
a joint maximization scheme for a penalized complete-data log-likelihood
was elucidated by Neal and Hinton (1998); they credit Csiszar and Tusnddy
(1984) and Hathaway (1986) as having noticed this connection earlier. Bag-
ging was proposed by Breiman (1996a). Stacking is due to Wolpert (1992);



Exercises 293

Breiman (1996b) contains an accessible discussion for statisticians. Leblanc
and Tibshirani (1996) describe variations on stacking based on the boot-
strap. Model averaging in the Bayesian framework has been recently advo-
cated by Madigan and Raftery (1994). Bumping was proposed by Tibshi-
rani and Knight (1999).

Exercises

Ex. 8.1 Let r(y) and ¢(y) be probability density functions. Jensen’s in-
equality states that for a random variable X and a convex function ¢(x),
E[¢(X)] > ¢[E(X)]. Use Jensen’s inequality to show that

Eqlog[r(Y)/q(Y)] (8.61)

is maximized as a function of r(y) when r(y) = ¢(y). Hence show that
R(0,0) > R(¢',0) as stated below equation (8.46).

Ex. 8.2 Consider the maximization of the log-likelihood (8.48), over dis-
tributions P(Z™) such that P(Z™) > 0 and ) ... P(Z™) = 1. Use La-
grange multipliers to show that the solution is the conditional distribution

P(Z™) = Pr(Z™|Z,0), as in (8.49).

Ex. 8.3 Justify the estimate (8.50), using the relationship
Pr(A) = /Pr(A|B)d(Pr(B)).

Ex. 8.4 Consider the bagging method of Section 8.7. Let our estimate f(x)
be the B-spline smoother fi(z) of Section 8.2.1. Consider the parametric
bootstrap of equation (8.6), applied to this estimator. Show that if we bag
f (z), using the parametric bootstrap to generate the bootstrap samples,
the bagging estimate fiag(z) converges to the original estimate f(z) as
B — 0.

Ex. 8.5 Suggest generalizations of each of the loss functions in Figure 10.4
to more than two classes, and design an appropriate plot to compare them.

Ex. 8.6 Consider the bone mineral density data of Figure 5.6.

(a) Fit a cubic smooth spline to the relative change in spinal BMD, as a
function of age. Use cross-validation to estimate the optimal amount
of smoothing. Construct pointwise 90% confidence bands for the un-
derlying function.

(b) Compute the posterior mean and covariance for the true function via
(8.28), and compare the posterior bands to those obtained in (a).
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(c) Compute 100 bootstrap replicates of the fitted curves, as in the bottom
left panel of Figure 8.2. Compare the results to those obtained in (a)
and (b).

Ex. 8.7 EM as a minorization algorithm(Hunter and Lange, 2004; Wu and
Lange, 2007). A function g(z,y) to said to minorize a function f(x) if

g9(z,y) < f(x), 9(z,z) = f(z) (8.62)

for all z,y in the domain. This is useful for maximizing f(x) since it is easy
to show that f(z) is non-decreasing under the update

xs+1

= argmax_g(z, z°) (8.63)
There are analogous definitions for majorization, for minimizing a function
f(x). The resulting algorithms are known as MM algorithms, for “Minorize-
Maximize” or “Majorize-Minimize.”

Show that the EM algorithm (Section 8.5.2) is an example of an MM al-
gorithm, using Q(¢’, 0)+1og Pr(Z|6) —Q(0, ) to minorize the observed data
log-likelihood ¢(¢’;Z). (Note that only the first term involves the relevant
parameter 6').
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9

Additive Models, Trees, and Related
Methods

In this chapter we begin our discussion of some specific methods for super-
vised learning. These techniques each assume a (different) structured form
for the unknown regression function, and by doing so they finesse the curse
of dimensionality. Of course, they pay the possible price of misspecifying
the model, and so in each case there is a tradeoff that has to be made. They
take off where Chapters 3-6 left off. We describe five related techniques:
generalized additive models, trees, multivariate adaptive regression splines,
the patient rule induction method, and hierarchical mixtures of experts.

9.1 Generalized Additive Models

Regression models play an important role in many data analyses, providing
prediction and classification rules, and data analytic tools for understand-
ing the importance of different inputs.

Although attractively simple, the traditional linear model often fails in
these situations: in real life, effects are often not linear. In earlier chapters
we described techniques that used predefined basis functions to achieve
nonlinearities. This section describes more automatic flexible statistical
methods that may be used to identify and characterize nonlinear regression
effects. These methods are called “generalized additive models.”

In the regression setting, a generalized additive model has the form

EY|X1, Xz, ..., Xp) = a+ fi(X1) + f2(Xo) + -+ fp(Xp).  (9:1)
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Asusual X1, X», ..., X, represent predictors and Y is the outcome; the f;’s
are unspecified smooth (“nonparametric”) functions. If we were to model
each function using an expansion of basis functions (as in Chapter 5), the
resulting model could then be fit by simple least squares. Our approach
here is different: we fit each function using a scatterplot smoother (e.g., a
cubic smoothing spline or kernel smoother), and provide an algorithm for
simultaneously estimating all p functions (Section 9.1.1).

For two-class classification, recall the logistic regression model for binary
data discussed in Section 4.4. We relate the mean of the binary response
w(X) = Pr(Y = 11X) to the predictors via a linear regression model and
the logit link function:

1(X) )
10g( =a+ /1 X1+ -+ BpX,. (9.2)
1 — p(X) e
The additive logistic regression model replaces each linear term by a more
general functional form

X
log (%) =a+ f1(X1)+ -+ fp(Xp), (9.3)
where again each f; is an unspecified smooth function. While the non-
parametric form for the functions f; makes the model more flexible, the
additivity is retained and allows us to interpret the model in much the
same way as before. The additive logistic regression model is an example
of a generalized additive model. In general, the conditional mean p(X) of
a response Y is related to an additive function of the predictors via a link
function g:

gu(X)] = a+ fi(X1) + -+ f(Xy): (9.4)

Examples of classical link functions are the following;:

e g(u) = p is the identity link, used for linear and additive models for
Gaussian response data.

e g(n) =logit(u) as above, or g(u) = probit(u), the probit link function,
for modeling binomial probabilities. The probit function is the inverse
Gaussian cumulative distribution function: probit(u) = ®~1(u).

e g(u) = log(p) for log-linear or log-additive models for Poisson count
data.

All three of these arise from exponential family sampling models, which
in addition include the gamma and negative-binomial distributions. These
families generate the well-known class of generalized linear models, which
are all extended in the same way to generalized additive models.

The functions f; are estimated in a flexible manner, using an algorithm
whose basic building block is a scatterplot smoother. The estimated func-
tion fj can then reveal possible nonlinearities in the effect of X;. Not all
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of the functions f; need to be nonlinear. We can easily mix in linear and
other parametric forms with the nonlinear terms, a necessity when some of
the inputs are qualitative variables (factors). The nonlinear terms are not
restricted to main effects either; we can have nonlinear components in two
or more variables, or separate curves in X; for each level of the factor Xj.
Thus each of the following would qualify:

o g(n) = XTB + ap, + f(Z)—a semiparametric model, where X is a
vector of predictors to be modeled linearly, ay the effect for the kth
level of a qualitative input V', and the effect of predictor Z is modeled
nonparametrically.

e g(p) = f(X) + gx(Z)—again k indexes the levels of a qualitative
input V, and thus creates an interaction term ¢(V,Z) = gx(Z) for
the effect of V and Z.

o g(p) = f(X)+ g(Z, W) where g is a nonparametric function in two
features.

Additive models can replace linear models in a wide variety of settings,
for example an additive decomposition of time series,

th = St + Tt + Et, (95)

where S; is a seasonal component, T} is a trend and ¢ is an error term.

9.1.1 Fitting Additive Models

In this section we describe a modular algorithm for fitting additive models

and their generalizations. The building block is the scatterplot smoother

for fitting nonlinear effects in a flexible way. For concreteness we use as our

scatterplot smoother the cubic smoothing spline described in Chapter 5.
The additive model has the form

Y=a+) fi(X;)+e (9.6)
j=1

where the error term € has mean zero. Given observations z;, y;, a criterion
like the penalized sum of squares (5.9) of Section 5.4 can be specified for
this problem,

N P 2 p
PRSS(a,fl,fQ,...,fp):Z<yi—a—2fj(xij)> —&—Z)\j/f]/./(tj)thj,
j=1 j=1

i=1
(9.7)
where the \; > 0 are tuning parameters. It can be shown that the minimizer
of (9.7) is an additive cubic spline model; each of the functions f; is a
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Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: & = &+ S0 vi, f; = 0,4, 5.
2. Cycle: 7=1,2,....p,..., 1,2, ....p,...,
i« SilHyi—a=> fulwa)} |,

k£

o1 M
fi fijij(xij).
1=1

until the functions fj change less than a prespecified threshold.

cubic spline in the component X, with knots at each of the unique values
of z;;, i = 1,..., N. However, without further restrictions on the model,
the solution is not unique. The constant « is not identifiable, since we
can add or subtract any constants to each of the functions f;, and adjust
a accordingly. The standard convention is to assume that Ziv filzi) =
0 Vj—the functions average zero over the data. It is easily seen that & =
ave(y;) in this case. If in addition to this restriction, the matrix of input
values (having ijth entry x;;) has full column rank, then (9.7) is a strictly
convex criterion and the minimizer is unique. If the matrix is singular, then
the linear part of the components f; cannot be uniquely determined (while
the nonlinear parts can!)(Buja et al., 1989).

Furthermore, a simple iterative procedure exists for finding the solution.
We set & = ave(y;), and it never changes. We apply a cubic smoothing
spline S; to the targets {y; — & — >, ; fre(@a)}Y, as a function of z;j,
to obtain a new estimate fj. This is done for each predictor in turn, using
the current estimates of the other functions fk when computing y; — & —
Zk;ﬁj i (k). The process is continued until the estimates fj stabilize. This
procedure, given in detail in Algorithm 9.1, is known as “backfitting” and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean zero (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can accommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators S;:

e other univariate regression smoothers such as local polynomial re-
gression and kernel methods;
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e linear regression operators yielding polynomial fits, piecewise con-
stant fits, parametric spline fits, series and Fourier fits;

e more complicated operators such as surface smoothers for second or
higher-order interactions or periodic smoothers for seasonal effects.

If we consider the operation of smoother S; only at the training points, it
can be represented by an N x N operator matrix S; (see Section 5.4.1).
Then the degrees of freedom for the jth term are (approximately) computed
as df; = trace[S;] — 1, by analogy with degrees of freedom for smoothers
discussed in Chapters 5 and 6.

For a large class of linear smoothers S;, backfitting is equivalent to a
Gauss—Seidel algorithm for solving a certain linear system of equations.
Details are given in Exercise 9.2.

For the logistic regression model and other generalized additive models,
the appropriate criterion is a penalized log-likelihood. To maximize it, the
backfitting procedure is used in conjunction with a likelihood maximizer.
The usual Newton—Raphson routine for maximizing log-likelihoods in gen-
eralized linear models can be recast as an IRLS (iteratively reweighted
least squares) algorithm. This involves repeatedly fitting a weighted linear
regression of a working response variable on the covariates; each regression
yields a new value of the parameter estimates, which in turn give new work-
ing responses and weights, and the process is iterated (see Section 4.4.1).
In the generalized additive model, the weighted linear regression is simply
replaced by a weighted backfitting algorithm. We describe the algorithm in
more detail for logistic regression below, and more generally in Chapter 6
of Hastie and Tibshirani (1990).

9.1.2 FExample: Additive Logistic Regression

Probably the most widely used model in medical research is the logistic
model for binary data. In this model the outcome Y can be coded as 0
or 1, with 1 indicating an event (like death or relapse of a disease) and
0 indicating no event. We wish to model Pr(Y = 1]X), the probability of
an event given values of the prognostic factors X7 = (Xi,...,X,). The
goal is usually to understand the roles of the prognostic factors, rather
than to classify new individuals. Logistic models are also used in applica-
tions where one is interested in estimating the class probabilities, for use
in risk screening. Apart from medical applications, credit risk screening is
a popular application.
The generalized additive logistic model has the form

Pr(Y = 1/X)
Py = 0|X)

The functions fi, f2,..., f, are estimated by a backfitting algorithm
within a Newton—-Raphson procedure, shown in Algorithm 9.2.

1 =a+ fi(Xy) 4+ fp(Xp). (9.8)
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Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.
1. Compute starting values: & = log[g/(1 — §)], where § = ave(y;), the
sample proportion of ones, and set f; = 0 Vj.

2. Define ) = &+ ), fj(x”) and p; = 1/[1 + exp(—17);)]-

Iterate:

(a) Construct the working target variable

. (yi — D)
zi =My + ———~.
Pi(1 —py)
(b) Construct weights w; = p;(1 — p;)

(¢) Fit an additive model to the targets z; with weights w;, us-
ing a weighted backfitting algorithm. This gives new estimates

dafj7 VJ

3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

The additive model fitting in step (2) of Algorithm 9.2 requires a weighted
scatterplot smoother. Most smoothing procedures can accept observation
weights (Exercise 5.12); see Chapter 3 of Hastie and Tibshirani (1990) for
further details.

The additive logistic regression model can be generalized further to han-
dle more than two classes, using the multilogit formulation as outlined in
Section 4.4. While the formulation is a straightforward extension of (9.8),
the algorithms for fitting such models are more complex. See Yee and Wild
(1996) for details, and the VGAM software currently available from:

http://www.stat.auckland.ac.nz/~yee.

Ezxample: Predicting Email Spam

We apply a generalized additive model to the spam data introduced in
Chapter 1. The data consists of information from 4601 email messages, in
a study to screen email for “spam” (i.e., junk email). The data is publicly
available at ftp.ics.uci.edu, and was donated by George Forman from
Hewlett-Packard laboratories, Palo Alto, California.

The response variable is binary, with values email or spam, and there are
57 predictors as described below:

e 48 quantitative predictors—the percentage of words in the email that
match a given word. Examples include business, address, internet,
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TABLE 9.1. Test data confusion matrix for the additive logistic regression model
fit to the spam training data. The overall test error rate is 5.5%.

Predicted Class

True Class | email (0) spam (1)
email (0) 58.3% 2.5%
spam (1) 3.0% 36.3%

free, and george. The idea was that these could be customized for
individual users.

e (6 quantitative predictors—the percentage of characters in the email
that match a given character. The characters are ch;, ch(, ch[, ch!,
ch$, and ch#.

e The average length of uninterrupted sequences of capital letters:
CAPAVE.

e The length of the longest uninterrupted sequence of capital letters:
CAPMAX.

e The sum of the length of uninterrupted sequences of capital letters:
CAPTOT.

We coded spam as 1 and email as zero. A test set of size 1536 was randomly
chosen, leaving 3065 observations in the training set. A generalized additive
model was fit, using a cubic smoothing spline with a nominal four degrees of
freedom for each predictor. What this means is that for each predictor Xj,
the smoothing-spline parameter \; was chosen so that trace[S;();)]—1 = 4,
where S;(\) is the smoothing spline operator matrix constructed using the
observed values z;;, ¢ = 1,...,N. This is a convenient way of specifying
the amount of smoothing in such a complex model.

Most of the spam predictors have a very long-tailed distribution. Before
fitting the GAM model, we log-transformed each variable (actually log(z +
0.1)), but the plots in Figure 9.1 are shown as a function of the original
variables.

The test error rates are shown in Table 9.1; the overall error rate is 5.3%.
By comparison, a linear logistic regression has a test error rate of 7.6%.
Table 9.2 shows the predictors that are highly significant in the additive
model.

For ease of interpretation, in Table 9.2 the contribution for each variable
is decomposed into a linear component and the remaining nonlinear com-
ponent. The top block of predictors are positively correlated with spam,
while the bottom block is negatively correlated. The linear component is a
weighted least squares linear fit of the fitted curve on the predictor, while
the nonlinear part is the residual. The linear component of an estimated
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TABLE 9.2. Significant predictors from the additive model fit to the spam train-
ing data. The coefficients represent the linear part of f;, along with their standard
errors and Z-score. The nonlinear P-value is for a test of nonlinearity of f;.

Name Num. df Coefficient Std. Error Z Score Nonlinear
P-value
Positive effects
our 5 3.9 0.566 0.114 4.970 0.052
over 6 3.9 0.244 0.195 1.249 0.004
remove 7 4.0 0.949 0.183 5.201 0.093
internet 8 4.0 0.524 0.176 2.974 0.028
free 16 3.9 0.507 0.127 4.010 0.065
business 17 3.8 0.779 0.186 4.179 0.194
hpl 26 3.8 0.045 0.250 0.181 0.002
ch! 52 4.0 0.674 0.128 5.283 0.164
ch$ 53 3.9 1.419 0.280 5.062 0.354
CAPMAX 56 3.8 0.247 0.228 1.080 0.000
CAPTOT 57 4.0 0.755 0.165 4.566 0.063
Negative effects
hp 25 3.9 —1.404 0.224 —6.262 0.140
george 27 3.7 —5.003 0.744 —6.722 0.045
1999 37 3.8 —0.672 0.191 —3.512 0.011
re 45 3.9 —0.620 0.133 —4.649 0.597
edu 46 4.0 —1.183 0.209 —5.647 0.000

function is summarized by the coefficient, standard error and Z-score; the
latter is the coefficient divided by its standard error, and is considered
significant if it exceeds the appropriate quantile of a standard normal dis-
tribution. The column labeled nonlinear P-value is a test of nonlinearity
of the estimated function. Note, however, that the effect of each predictor
is fully adjusted for the entire effects of the other predictors, not just for
their linear parts. The predictors shown in the table were judged signifi-
cant by at least one of the tests (linear or nonlinear) at the p = 0.01 level
(two-sided).

Figure 9.1 shows the estimated functions for the significant predictors
appearing in Table 9.2. Many of the nonlinear effects appear to account for
a strong discontinuity at zero. For example, the probability of spam drops
significantly as the frequency of george increases from zero, but then does
not change much after that. This suggests that one might replace each of
the frequency predictors by an indicator variable for a zero count, and resort
to a linear logistic model. This gave a test error rate of 7.4%; including the
linear effects of the frequencies as well dropped the test error to 6.6%. It
appears that the nonlinearities in the additive model have an additional
predictive power.
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FIGURE 9.1. Spam analysis: estimated functions for significant predictors. The
rug plot along the bottom of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the nonlinearity picks up the
discontinuity at zero.



304 9. Additive Models, Trees, and Related Methods

It is more serious to classify a genuine email message as spam, since then
a good email would be filtered out and would not reach the user. We can
alter the balance between the class error rates by changing the losses (see
Section 2.4). If we assign a loss Loy for predicting a true class 0 as class 1,
and Lo for predicting a true class 1 as class 0, then the estimated Bayes
rule predicts class 1 if its probability is greater than Lgq/(Lo1 + L1g). For
example, if we take Loy = 10, L1gp = 1 then the (true) class 0 and class 1
error rates change to 0.8% and 8.7%.

More ambitiously, we can encourage the model to fit better data in the
class 0 by using weights Lg; for the class 0 observations and Ly, for the
class 1 observations. As above, we then use the estimated Bayes rule to
predict. This gave error rates of 1.2% and 8.0% in (true) class 0 and class 1,
respectively. We discuss below the issue of unequal losses further, in the
context of tree-based models.

After fitting an additive model, one should check whether the inclusion
of some interactions can significantly improve the fit. This can be done
“manually,” by inserting products of some or all of the significant inputs,
or automatically via the MARS procedure (Section 9.4).

This example uses the additive model in an automatic fashion. As a data
analysis tool, additive models are often used in a more interactive fashion,
adding and dropping terms to determine their effect. By calibrating the
amount of smoothing in terms of df;, one can move seamlessly between
linear models (df; = 1) and partially linear models, where some terms are
modeled more flexibly. See Hastie and Tibshirani (1990) for more details.

9.1.3  Summary

Additive models provide a useful extension of linear models, making them
more flexible while still retaining much of their interpretability. The familiar
tools for modeling and inference in linear models are also available for
additive models, seen for example in Table 9.2. The backfitting procedure
for fitting these models is simple and modular, allowing one to choose a
fitting method appropriate for each input variable. As a result they have
become widely used in the statistical community.

However additive models can have limitations for large data-mining ap-
plications. The backfitting algorithm fits all predictors, which is not feasi-
ble or desirable when a large number are available. The BRUTO procedure
(Hastie and Tibshirani, 1990, Chapter 9) combines backfitting with selec-
tion of inputs, but is not designed for large data-mining problems. There
has also been recent work using lasso-type penalties to estimate sparse ad-
ditive models, for example the COSSO procedure of Lin and Zhang (2006)
and the SpAM proposal of Ravikumar et al. (2008). For large problems a
forward stagewise approach such as boosting (Chapter 10) is more effective,
and also allows for interactions to be included in the model.
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9.2 Tree-Based Methods

9.2.1 Background

Tree-based methods partition the feature space into a set of rectangles, and
then fit a simple model (like a constant) in each one. They are conceptually
simple yet powerful. We first describe a popular method for tree-based
regression and classification called CART, and later contrast it with C4.5,
a major competitor.

Let’s consider a regression problem with continuous response Y and in-
puts X7 and X5, each taking values in the unit interval. The top left panel
of Figure 9.2 shows a partition of the feature space by lines that are parallel
to the coordinate axes. In each partition element we can model Y with a
different constant. However, there is a problem: although each partitioning
line has a simple description like X; = ¢, some of the resulting regions are
complicated to describe.

To simplify matters, we restrict attention to recursive binary partitions
like that in the top right panel of Figure 9.2. We first split the space into
two regions, and model the response by the mean of Y in each region.
We choose the variable and split-point to achieve the best fit. Then one
or both of these regions are split into two more regions, and this process
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at Xy = ¢;. Then the region X; < t;
is split at Xs = to and the region X; > t; is split at X; = t3. Finally, the
region X7 > t3 is split at X5 = t4. The result of this process is a partition
into the five regions Ry, Rs, ..., R5 shown in the figure. The corresponding
regression model predicts Y with a constant ¢,, in region R,,, that is,

5

FX) =" emI{(X1,Xs) € Ry }. (9.9)

m=1

This same model can be represented by the binary tree in the bottom left
panel of Figure 9.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions Ry, Ra, ..., R5. The bottom right panel of
Figure 9.2 is a perspective plot of the regression surface from this model.
For illustration, we chose the node means ¢; = —5,¢c0 = —7,¢c3 = 0,¢4 =
2, c5 = 4 to make this plot.

A key advantage of the recursive binary tree is its interpretability. The
feature space partition is fully described by a single tree. With more than
two inputs, partitions like that in the top right panel of Figure 9.2 are
difficult to draw, but the binary tree representation works in the same
way. This representation is also popular among medical scientists, perhaps
because it mimics the way that a doctor thinks. The tree stratifies the
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2  Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(zs,y;) for i = 1,2,..., N, with @; = (z41,%2,...,%;p). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition into M regions Ry, Ra, ..., Ry, and we model the response
as a constant c,, in each region:

M
f@)=>" eml(z € Rpy). (9.10)

If we adopt as our criterion minimization of the sum of squares > (y; —
f(x;))?, it is easy to see that the best &,, is just the average of y; in region
R,,:

ém = ave(y;|x; € Ry). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

Ri(j,s) ={X|X; <s} and Ra(j,s) = {X|X; > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min[ngin Z (yi — c1)? +ngn Z (y; — 2)?]. (9.13)

Jsle
z;€R1(4,5) z;€R2(4,s)
For any choice j and s, the inner minimization is solved by
¢1 = ave(y;|x; € R1(j,8)) and éo = ave(y;|z; € Ra(J,8)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (7, s) is feasible.

Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.
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Tree size is a tuning parameter governing the model’s complexity, and the
optimal tree size should be adaptively chosen from the data. One approach
would be to split tree nodes only if the decrease in sum-of-squares due to the
split exceeds some threshold. This strategy is too short-sighted, however,
since a seemingly worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree Tj, stopping the splitting
process only when some minimum node size (say 5) is reached. Then this
large tree is pruned using cost-complezity pruning, which we now describe.

We define a subtree T' C T to be any tree that can be obtained by
pruning Tp, that is, collapsing any number of its internal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
R,,. Let |T| denote the number of terminal nodes in T'. Letting

N,, = #{xz c Rm}v

1
ém = X Z Yis
N R, (9.15)
1 N
Qm(T) - Ni Z (yz - Cm) )

m T, €ERm
we define the cost complexity criterion

[T
CalT) = 3 NyuQu(T) + a|T]. (9.16)

The idea is to find, for each «, the subtree T,, C Ty to minimize C,(T).
The tuning parameter o > 0 governs the tradeoff between tree size and its
goodness of fit to the data. Large values of « result in smaller trees T, and
conversely for smaller values of . As the notation suggests, with o = 0 the
solution is the full tree Tj;. We discuss how to adaptively choose a below.

For each a one can show that there is a unique smallest subtree T, that
minimizes C, (7). To find T,, we use weakest link pruning: we successively
collapse the internal node that produces the smallest per-node increase in
Y i N Qi (T), and continue until we produce the single-node (root) tree.
This gives a (finite) sequence of subtrees, and one can show this sequence
must contain Tj,. See Breiman et al. (1984) or Ripley (1996) for details.
Estimation of « is achieved by five- or tenfold cross-validation: we choose
the value & to minimize the cross-validated sum of squares. Our final tree
is Td.

9.2.3  Classification Trees

If the target is a classification outcome taking values 1,2, ..., K, the only
changes needed in the tree algorithm pertain to the criteria for splitting
nodes and pruning the tree. For regression we used the squared-error node
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5,0.5).

impurity measure @Q,,(T") defined in (9.15), but this is not suitable for
classification. In a node m, representing a region R,,, with IV, observations,
let

R 1
Pmik = N Z I(yi :k)7

™ 2;€R.,

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxy pmk, the majority class in
node m. Different measures @,,,(T) of node impurity include the following:

Misclassification error: % Yier, 1y # k(m)) =1 = Prk(m)-
Gini index: Z,ﬁék, Dk Pmk = Zszl Dk (1 — Dk )-
Cross-entropy or deviance: — Ele Dk 10g D

(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 — max(p,1 — p), 2p(1 — p) and —plogp — (1 — p)log (1 — p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number N,,, and N,,, of
observations in the two child nodes created by splitting node m.

In addition, cross-entropy and the Gini index are more sensitive to changes
in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while
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the other created nodes (200,400) and (200, 0). Both splits produce a mis-
classification rate of 0.25, but the second split produces a pure node and is
probably preferable. Both the Gini index and cross-entropy are lower for the
second split. For this reason, either the Gini index or cross-entropy should
be used when growing the tree. To guide cost-complexity pruning, any of
the three measures can be used, but typically it is the misclassification rate.

The Gini index can be interpreted in two interesting ways. Rather than
classify observations to the majority class in the node, we could classify
them to class k& with probability p,,x. Then the training error rate of this
rule in the node is ), k! DPmkPmi—the Gini index. Similarly, if we code
each observation as 1 for class k and zero otherwise, the variance over the
node of this 0-1 response is Pk (1 — k). Summing over classes k again
gives the Gini index.

9.2.4 Other Issues
Categorical Predictors

When splitting a predictor having ¢ possible unordered values, there are
2¢—1 — 1 possible partitions of the ¢ values into two groups, and the com-
putations become prohibitive for large ¢q. However, with a 0 — 1 outcome,
this computation simplifies. We order the predictor classes according to the
proportion falling in outcome class 1. Then we split this predictor as if it
were an ordered predictor. One can show this gives the optimal split, in
terms of cross-entropy or Gini index, among all possible 29~ —1 splits. This
result also holds for a quantitative outcome and square error loss—the cat-
egories are ordered by increasing mean of the outcome. Although intuitive,
the proofs of these assertions are not trivial. The proof for binary outcomes
is given in Breiman et al. (1984) and Ripley (1996); the proof for quantita-
tive outcomes can be found in Fisher (1958). For multicategory outcomes,
no such simplifications are possible, although various approximations have
been proposed (Loh and Vanichsetakul, 1988).

The partitioning algorithm tends to favor categorical predictors with
many levels ¢; the number of partitions grows exponentially in ¢, and the
more choices we have, the more likely we can find a good one for the data
at hand. This can lead to severe overfitting if ¢ is large, and such variables
should be avoided.

The Loss Matriz

In classification problems, the consequences of misclassifying observations
are more serious in some classes than others. For example, it is probably
worse to predict that a person will not have a heart attack when he/she
actually will, than vice versa. To account for this, we define a K x K loss
matrix L, with Ly, being the loss incurred for classifying a class k obser-
vation as class k’. Typically no loss is incurred for correct classifications,
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that is, Lir = 0 Vk. To incorporate the losses into the modeling process,
we could modify the Gini index to Zk¢k, Lk Pk Pmi; this would be the
expected loss incurred by the randomized rule. This works for the multi-
class case, but in the two-class case has no effect, since the coefficient of
PmkDmk 18 Lk + L. For two classes a better approach is to weight the
observations in class k by L. This can be used in the multiclass case only
if, as a function of k, Ly doesn’t depend on k’. Observation weighting can
be used with the deviance as well. The effect of observation weighting is to
alter the prior probability on the classes. In a terminal node, the empirical
Bayes rule implies that we classify to class k(m) = argming >, Lexpme-

Missing Predictor Values

Suppose our data has some missing predictor values in some or all of the
variables. We might discard any observation with some missing values, but
this could lead to serious depletion of the training set. Alternatively we
might try to fill in (impute) the missing values, with say the mean of that
predictor over the nonmissing observations. For tree-based models, there
are two better approaches. The first is applicable to categorical predictors:
we simply make a new category for “missing.” From this we might dis-
cover that observations with missing values for some measurement behave
differently than those with nonmissing values. The second more general
approach is the construction of surrogate variables. When considering a
predictor for a split, we use only the observations for which that predictor
is not missing. Having chosen the best (primary) predictor and split point,
we form a list of surrogate predictors and split points. The first surrogate
is the predictor and corresponding split point that best mimics the split of
the training data achieved by the primary split. The second surrogate is
the predictor and corresponding split point t