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1 Overview

Consider an irrational real number like π = 3.1415926535..., represented by an
infinite non-repeating sequence of decimal digits. Clearly an exact specification
of this number requires an infinite amount of information.1 In contrast, comput-
ers must represent numbers using only a finite quantity of information, which
clearly means we won’t be able to represent numbers like π without some error.
In principle there are many different ways in which numbers could be repre-
sented on machines, each of which entails different tradeoffs in convenience and
precision. In practice, there are two types of representations that have proven
most useful: fixed-point and floating-point numbers. Modern computers use
both types of representation. Each method has advantages and drawbacks, and
a key skill in numerical analysis is to understand where and how the computer’s
representation of your calculation can go catastrophically wrong.

The easiest way to think about computer representation of numbers is to
imagine that the computer represents numbers as finite collections of decimal
digits. Of course, in real life computers store numbers as finite collections of
binary digits. However, for our purposes this fact will be an unimportant im-
plementation detail; all the concepts and phenomena we need to understand
can be pictured most easily by thinking of numbers inside computers as finite
strings of decimal digits. At the end of our discussion we will discuss the minor
points that need to be amended to reflect the base-2 reality of actual computer
numbers.

1See the Appendix for an expanded discussion of this point.
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2 Fixed Point Representation of Numbers

The simplest way to represent numbers in a computer is to allocate, for each
number, enough space to hold N decimal digits, of which some lie before the
decimal point and some lie after. For example, we might allocate 7 digits to
each number, with 3 digits before the decimal point and 4 digits after. (We
will also allow the number to have a sign, ±.) Then each number would look
something like this, where each box stores a digit from 0 to 9:

+
Figure 1: In a 7-digit fixed-point system, each number consists of a string of 7
digits, each of which may run from 0 to 9.

For example, the number 12.34 would be represented in the form

Figure 2: The number 12.34 as represented in a 7-digit fixed-point system.

The representable set

The numbers that may be exactly represented form a finite subset of the real
line, which we might call Srepresentable or maybe just Srep for short. In the
fixed-point scheme illustrated by Figure 1, the exactly representable numbers
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are

Srep =



-999.9999

-999.9998

-999.9997
...

-000.0001

+000.0000

+000.0001

+000.0002
...

+999.9998

+999.9999

Notice something about this list of numbers: They are all separated by the
same absolute distance, in this case 0.0001. Another way to say this is that the
density of the representable set is uniform over the real line (at least between
the endpoints, Rmax

min = ±999.9999): Between any two real numbers r1 and r2
lie the same number of exactly representable fixed-point numbers. For exam-
ple, between 1 and 2 there are 104 exactly-representable fixed-point numbers,
and between 101 and 102 there are also 104 exactly-representable fixed-point
numbers.

Rounding error

Another way to characterize the uniform density of the set of exactly rep-
resentable fixed-point numbers is to ask this question: Given an arbitrary
real number r in the interval [Rmax, Rmin], how near is the nearest exactly-
representable fixed-point number? If we denote this number by fi(r), then the
statement that holds for fixed-point arithmetic is:

for all r ∈ R, Rmin < r < Rmax,∃ ε with |ε| ≤ EPSABS such that
fi(r) = r + ε.

(1)

In equation (1), EPSABS is a fundamental quantity associated with a given fixed-
point representation scheme; it is the maximum absolute error incurred in the
approximate fixed-point representation of real numbers. For the particular fixed-
point scheme depicted in (1), we have EPSABS = 0.00005.

The fact that the absolute rounding error is uniformly bounded is charac-
teristic of fixed-point representation schemes; in floating-point schemes it is the
relative rounding error that is uniformly bounded, as we will see below.

Error-free calculations

There are many calculations that can be performed in a fixed-point system with
no error. For example, suppose we want to add the two numbers 12.34 and
742.55. Both of these numbers are exactly representable in our fixed-point
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system, as is their sum (754.89), so the calculation in fixed-point arithmetic
yields the exact result:

+

=
Figure 3: Arithmetic operations in which both the inputs and the outputs are
exactly representable incur no error.

We repeat again that the computer representation of this calculation introduces
no error. In general, arithmetic operations in which both the inputs and outputs
are elements of the representable set incur no error; this is true for both fixed-
point and floating-point
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Non-error-free calculations

On the other hand, here’s a calculation that is not error-free.

/

=
Figure 4: A calculation that is not error-free. The exact answer here is
24/7=3.42857142857143..., but with finite precision we must round the an-
swer to nearest representable number.
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Overflow

The error in (4) is not particularly serious. However, there is one type of cal-
culation that can go seriously wrong in a fixed-point system. Suppose, in the
calculation of Figure 3, that the first summand were 412.34 instead of 12.34.
The correct sum is

412.24 + 742.55 = 1154.89.

However, in fixed-point arithmetic, our calculation looks like this:

+

=
Figure 5: Overflow in fixed-point arithmetic.

The leftmost digit of the result has fallen off the end of our computer! This
is the problem of overflow: the number we are trying to represent does not fit
in our fixed-point system, and our fixed-point representation of this number is
not even close to being correct (154.89 instead of (1154.89). If you are lucky,
your computer will detect when overflow occurs and give you some notification,
but in some unhappy situations the (completely, totally wrong) result of this
calculation may propagate all the way through to the end of your calculation,
yielding highly befuddling results.

The problem of overflow is greatly mitigated by the introduction of floating-
point arithmetic, as we will discuss next.
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3 Floating-Point Representation of Numbers

The idea of floating-point representations is to allow the decimal point in Figure
1 to move around – that is, to float – in order to accommodate changes in the
scale of the numbers we are trying to represent.

More specifically, if we have a total of 7 digits available to represent numbers,
we might set aside 2 of them (plus a sign bit) to represent the exponent of the
calculation – that is, the order of magnitude. That leaves behind 5 boxes for the
actual significant digits in our number; this portion of a floating-point number
is called the mantissa. A general element of our floating-point representation
scheme will then look like this:

+ +

Figure 6: A floating-point scheme with a 5-decimal-digit mantissa and a two-
decimal-digit exponent.

For example, some of the numbers we represented above in fixed-point form
look like this when expressed in floating-point form:

12.34 =
+

754.89 =
+

Vastly expanded dynamic range

The choice to take digits from the mantissa to store the exponent does not come
without cost: now we can only store the first 5 significant digits of a number,
instead of the first 7 digits.

However, the choice buys us enormously greater dynamic range: in the
number scheme above, we can represent numbers ranging from something like
±10−103 to ±10+99, a dynamic range of of more than 200 orders of magnitude.
In contrast, in the fixed-point scheme of Figure 1, the representable numbers
span a piddling 7 orders of magnitude! This is a huge win for the floating-point
scheme.

Of course, the dynamic range of floating-point scheme is not infinite, and
there do exist numbers that are too large to be represented. In the scheme
considered above, these would be numbers greater than something like Rmax ≈
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10100; in 64-bit IEEE double-precision binary floating-point (the usual floating-
point scheme you will use in numerical computing) the maximum representable
number is something closer to Rmax ≈ 10308. We are not being particularly pre-
cise in pinning down these maximum representable numbers, because in practice
you should never get anywhere near them: if you are doing a calculation in which
numbers on the order of 10300 appear, you are doing something wrong.

The representable set

Next notice something curious: The number of empty boxes in Figure 6 is the
same as the number of empty boxes in Figure 1. In both cases, we have 7 empty
boxes, each of which can be filled by any of the 10 digits from 0 to 9; thus in both
cases the total number of representable numbers is something like 107. (This
calculation omits the complications arising from the presence of sign bits, which
give additional factors of 2 but don’t change the thrust of the argument). Thus
the sets of exactly representable fixed-point and exactly representable floating-
point numbers have roughly the same cardinality. And yet, as we just saw, the
floating-point set is distributed over a fantastically wider stretch of the real axis.
The only way this can be true is if the two representable sets have very different
densities.

In particular, in contrast to fixed-point numbers, the density of the set of
exactly representable floating-point numbers is non-uniform. There are more
exactly representable floating-point numbers in the interval [1, 2] then there are
in the interval [101, 102]. (In fact, there are roughly the same number of exactly-
representable floating-point numbers in the intervals [1, 2] and [100, 200].)

Some classes of exactly representable numbers

1. Integers. All integers in the range [−Imax, Imax] are exactly representable,
where Imax depends on the size of the mantissa. For our 5-decimal-digit
floating-point scheme, we would have Imax = 99, 999. For 64-bit (double
precision) IEEE floating-point arithmetic we have Imax ≈ 1016.

2. Integers divided by 10 (in decimal floating-point)

3. Integers divided by 2 (in binary floating-point)

4. Zero is always exactly representable.

Rounding error

For a real number r, let fl(r) be the real number closest to r that is exactly
representable in a floating-point scheme. Then the statement analogous to (1)
is

for all r ∈ R, |r| < Rmax, ∃ ε with |ε| ≤ EPSREL such that

fl(r) = r(1 + ε)
(2)
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where EPSREL is a fundamental quantity associated with a given floating-point
representation; it is the maximum relative error incurred in the approximate
floating-point representation of real numbers. EPSREL is typically known as
“machine precision” (and often denoted εmachine or simply EPS). In the decimal
floating-point scheme illustrated in Figure 6, we would have EPSREL ≈ 10−5.

For actual real-world numerical computations using 64-bit (double-precision)
IEEE floating-point arithmetic, the number you should keep in mind is EPSREL≈
10−15. Another way to think of this is: double-precision floating-point can
represent real numbers to about 15 digits of precision. High-level languages like
matlab and julia have built-in commands to inform you of the value of EPSREL
on whatever machine you are running on:

julia> eps()

2.220446049250313e-16
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4 The Big Floating-Point Kahuna: Catastrophic
Loss of Numerical Precision

In the entire subject of machine arithmetic there is one notion which is so
important that it may be singled out as the most crucial concept in the whole
discussion. If you take away only one idea from our coverage of floating-point
arithmetic, it should be this one:

Never compute a small number as the difference
between two nearly equal large numbers.

The phenomenon that arises when you subtract two nearly equal floating-point
numbers is called catastrophic loss of numerical precision; to emphasize that
it is the main pitfall you need to worry about we will refer to it as the big
floating-point kahuna.

A population dynamics example

As an immediate illustration of what happens when you ignore the admonition
above, suppose we attempt to compute the net change in the U.S. population
during the month of February 2011 by comparing the nation’s total population
on February 1,2011 and March 1, 2011. We find the following data:2

Date US population (thousands)
2011-02-01 311,189
2011-03-01 311,356

Table 1: Monthly U.S. population data for February and March 2011.

These data have enough precision to allow us to compute the actual change
in population (in thousands) to three-digit precision:

311,356− 311,189 = 167. (3)

But now suppose we try to do this calculation using the floating-point system
discussed in the previous section, in which the mantissa has 5-digit precision.
The floating representations of the numbers in Table 1 are

fl(311,356) = 3.1136× 105

fl(311,189) = 3.1119× 105

2http://research.stlouisfed.org/fred2/series/POPTHM/downloaddata?cid=104
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Subtracting, we find

3.1136× 105

−3.1119× 105

=1.7000× 102 (4)

Comparing (3) and (4), we see that the floating-point version of our answer is
170, to be compared with the exact answer of 167. Thus our floating-point
calculation has incurred a relative error of about 2 · 10−2. But, as noted above,
the value of EPSREL for our 5-significant-digit floating-point scheme is approxi-
mately 10−5! Why is the error in our calculation 2000 times larger than machine
precision?

What has happened here is that almost all of our precious digits of precision
are wasted because the numbers we are subtracting are much bigger than their
difference. When we use floating-point registers to store the numbers 311,356

and 311,189, almost all of our precision is used to represent the digits 311,
which are the ones that give zero information for our calculation because they
cancel in the subtraction.

More generally, if we have N digits of precision and the first M digits of
x and y agree, then we can only compute their difference to around N −M
digits of precision. We have thrown away M digits of precision! When M is
large (close to N), we say we have experienced catastrophic loss of numerical
precision. Much of your work in practice as a numerical analyst will be in
developing schemes to avoid catastrophic loss of numerical precision.

In 18.330 we will refer to catastrophic loss of precision as the big floating-
point kahuna. It is the one potential pitfall of floating-point arithmetic that you
must always have in the back of your mind.

The big floating-point kahuna in finite-difference differen-
tiation

In our unit on finite-difference derivatives we noted that the forward-finite-
difference approximation to the first derivative of f(x) at a point x is

f ′FD(h, x) =
f(x+ h)− f(x)

h
(5)

where h is the stepsize. In exact arithmetic, the smaller we make h the more
closely this quantity approximates the exact derivative. But in your problem
set you found that this is only true down to a certain critical stepsize hcrit;
taking h smaller than this critical stepsize actually makes things worse, i.e.
increases the error between f ′FD. Let’s now investigate this phenomenon using
floating-point arithmetic. We will differentiate the simplest possible function
imaginable, f(x) = x, at the point x = 1; that is, we will compute the quantity

f(x+h)-f(x)

h

for various floating-point stepsizes h.
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Stepsize h = 2
3

First suppose we start with a stepsize of h = 2
3 . This number is not exactly

representable; in our 5-decimal-digit floating-point scheme, it is rounded to

fl(h) = 0.66667 (6a)

The sequence of floating-point numbers that our computation generates is now

f(x+h) = 1.6667 (6b)

f(x) = 1.0000

f(x+h) - f(x) = 0.6667

and thus

f(x+h) - f(x)

h
=

0.66670

0.66667
(6c)

The numerator and denominator here begin to differ in their 4th digits, so their
ratio deviates from 1 by around 10−4. Thus we find

f ′FD

(
h =

2

3
, x

)
= 1 +O(10−4) (6d)

and thus, since f ′exact = 1,

for h =
2

3
the error in f ′FD(h, x) is about 10−4. (6e)
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Stepsize h = 1
10
· 2

30

Now let’s shrink the stepsize by 10 and try again. Like the old stepsize h = 2/3,
the new stepsize h = 2

30 is not exactly representable. In our 5-decimal-digit
floating-point scheme, it is rounded to

fl(h) = 0.066667 (7a)

Note that our floating-point scheme allows us to specify this h with just as much
precision as we were able to specify the previous value of h [equation (6a)] –
namely, 5-digit precision. So we certainly don’t suffer any loss of precision at
this step.

The sequence of floating-point numbers that our computation generates is
now

f(x+h) = 1.0667 (7b)

f(x) = 1.0000

f(x+h) - f(x) = 0.0667

and thus

f(x+h) - f(x)

h
=

0.066700

0.066667
(7c)

Now the numerator and denominator begin to disagree in the third decimal
place, so the ratio deviates from 1 by around 10−3, i.e. we have

f ′FD

(
h =

1

30
, x

)
= 1 +O(10−3) (7d)

and thus, since f ′exact = 1,

for h =
2

30
the error in f ′FD(h, x) is about 10−3. (7e)

Comparing equation (7e) to equation (6e) we see that shrinking h by a factor
of 10 has increased the error by a factor of ten! What went wrong?

Analysis

The key equations to look at are (6b) and (7b). As we noted above, our floating-
point scheme represents 2

3 and 2
30 with the same precision – namely, 5 digits.

Although the second number is 10 times smaller, the floating-point uses the
same mantissa for both numbers and just adjusts the exponent appropriately.

The problem arises when we attempt to cram these numbers inside a floating-
point register that must also store the quantity 1, as in (6b) and (7b). Because
the overall scale of the number is set by the 1, we can’t simply adjust the
exponent to accommodate all the digits of 2

30 . Instead, we lose digits off the
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right end – more specifically, we lose one more digit off the right end in (7b) then
we did in (7b). However, when we go to perform the division in (6c) and (7c),
the numerator is the same 5-digit-accurate h value we started with [eqs. (6a)
and (7a)]. This means that each digit we lost by cramming our number together
with 1 now amounts to an extra lost digit of precision in our final answer.

Avoiding the big floating-point kahuna

Once you know that the big floating-point kahuna is lurking out there waiting to
bite, it’s easier to devise ways to avoid him. To give just one example, suppose
we need to compute values of the quantity

f(x,∆) =
√
x+ ∆−

√
x.

When ∆� x,the two terms on the RHS are nearly equal, and subtracting them
gives rise to catastrophic loss of precision. For example, if x = 900, ∆ = 4e-3,
the calculation on the RHS becomes

30.00006667− 30.00000000

and we waste the first 6 decimal digits of our floating-point precision; in the
5-decimal-digit scheme discussed above, this calculation would yield precisely
zero useful information about the number we are seeking.

However, there is a simple workaround. Consider the identity(√
x+ ∆−

√
x
)(√

x+ ∆ +
√
x
)

= (x+ ∆)− x = ∆

which we might rewrite in the form(√
x+ ∆−

√
x
)

=
∆(√

x+ ∆ +
√
x
) .

The RHS of this equation is a safe way to compute a value for the LHS; for
example, with the numbers considered above, we have

4e-3

30.0000667 + 30.0000000
≈ 6.667e-5.

Even if we can’t store all the digits of the numbers in the denominator, it doesn’t
matter; in this way of doing the calculation those digits aren’t particularly
relevant anyway.
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5 Other Floating-Point Kahunae

Random-walk error accumulation

Consider the following code snippet, which adds a number to itself N times:

function DirectSum(X, N)

Sum=0.0;

for n=1:N

Sum += X;

end

Sum

end

Suppose we divide some number Y into N equal parts and add them all up.
How accurately to we recover the original value of Y ? The following figure plots
the quantity

|DirectSum
(
Y
N , N

)
− Y |

Y

for the case Y = π and various values of N . Evidently we incur significant errors
for large N .
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.
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The cure for random-walk error accumulation

Unlike many problems in life and mathematics, the problem posed in previous
subsection turns out to have a beautiful and comprehensive solution that, in
practice, utterly eradicates the difficulty. All we have to do is replace DirectSum
with the following function:3

function RecursiveSum(X, N)

if N < BaseCaseThreshold

Sum = DirectSum(X,N)

else

Sum = RecursiveSum(X,N/2) + RecursiveSum(X,N/2);

end

Sum

end

What this function does is the following: If N is less than some threshold value
BaseCaseThreshold (which may be 100 or 1000 or so), we perform the sum
directly. However, for larger values of N we perform the sum recursively : We
evaluate the sum by adding together two return values of RecursiveSum. The
following figure shows that this slight modification completely eliminates the
error incurred in the direct-summation process:
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3Caution: The function RecursiveSum as implemented here actually only works for even
values of N . Can you see why? For the full, correctly-implemented version of the function,
see the code RecursiveSum.jl available from the “Lecture Notes” section of the website.
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Analysis

Why does such a simple prescription so thoroughly cure the disease? The basic
intuition is that, in the case of DirectSum with large values of N , by the time
we are on the 10,000th loop iteration we are adding X to a number that is 104

times bigger than X. That means we instantly lose 4 digits of precision of the
right end of X, giving rise to a random rounding error. As we go to higher and
higher loop iterations, we are adding the small number X to larger and larger
numbers, thus losing more and more digits off the right end of our floating-point
register.

In contrast, in the RecursiveSum approach we never add X to any number
that is more than BaseCaseThreshold times greater than X. This limits the
number of digits we can ever lose off the right end of X. Higher-level additions
are computing the sum of numbers that are roughly equal to each other, in
which case the rounding error is on the order of machine precision (i.e. tiny).

For a more rigorous analysis of the error in direct and pairwise summation,
see the Wikipedia page on the topic4, which was written by MIT’s own Professor
Steven Johnson.

4http://en.wikipedia.org/wiki/Pairwise summation
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6 Fixed-Point and Floating-Point Numbers in
Modern Computers

As noted above, modern computers use both fixed-point and floating-point num-
bers.

Fixed-point numbers: int or integer

Modern computers implement fixed-point numbers in the form of integers, typi-
cally denoted int or integer. Integers correspond to the fixed-point diagram of
Figure 1 with zero digits after the decimal place; the quantity EPSABS in equa-
tion (1) is 0.5. Rounding is always performed toward zero; for example, 9/2=4,
-9/2=-4. You can get the remainder of an integer division by using the %
symbol to perform modular arithmetic. For example, 19/7 = 2 with remainder
5:

julia> 19%7

5

Floating-point numbers: float or double

The floating-point standard that has been in use since the 1980s is known as
IEEE 754 floating point (where “754” is the number of the technical document
that introduced it). There are two primary sizes of floating-point numbers,
32-bit (known as “single precision” and denoted float or float32) and 64-bit
(known as “double precision” and denoted double or float64).

Single-precision floating-point numbers have a mantissa of approximately
7 digits (EPSREL≈ 10−8) while double-precision floating-point numbers have a
mantissa of approximately 15 digits (EPSREL≈ 10−16.)

You will do most of your numerical calculations in double-precision arith-
metic, but single precision is still useful for, among other things, storing num-
bers in data files, since you typically won’t need to store all 15 digits of the the
numbers generated by your calculations.

Inf and NaN

The floating-point standard defines special numbers to represent the result of
ill-defined calculations.

If you attempt to divide a non-zero number by zero, the result will be a
special number called Inf. (There is also -Inf.) This special number satisfies
x+Inf=Inf and x*Inf=Inf if x > 0. You will also get Inf in the event of
overflow, i.e. when the result of a floating-point calculation is larger than the
largest representable floating-point number:
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julia> exp(1000)

Inf

On the other hand, if you attempt to perform an ill-defined calculation like
0.0/0.0 then the result will be a special number called NaN (“not a number.”)
This special number has the property that all arithmetic operations involving
NaN result in NaN. (For example, 4.0+NaN=NaN, -1000.0*NaN.)

What this means is that, if you are running a big calculation in which any
one piece evaluates to NaN (for example, a single entry in a matrix), that NaN will
propagate all the way through the rest of your calculation and contaminate the
final answer. If your calculation takes hours to complete, you will be an unhappy
camper upon arriving the following morning to check your data and discovering
that a NaN somewhere in the middle of the night has corrupted everything. (I
speak from experience.) Be careful!

NaN also satisfies the curious property that it is not equal to itself:

julia> x=0.0 / 0.0

NaN

julia> y=0.0 / 0.0

NaN

julia> x==y

false

julia>

This fact can actually be used to test whether a given number is NaN.

Distinguishing floating-point integers from integer integers

If, in writing a computer program, you wish to define a integer-valued constant
that you want the computer to store as a floating-point number, write 4.0

instead of 4.

Arbitrary-precision arithmetic

In the examples above we discussed the kinds of errors that can arise when
you do floating-point arithmetic with a finite-length mantissa. Of course it
is possible to chain together multiple floating-point registers to create a longer
mantissa and achieve any desired level of floating-point precision. (For example,
by combining two 64-bit registers we obtain a 128-bit register, of which we might
set aside 104 bits for the mantissa, roughly doubling the number of significant
digits we can store.) Software packages that do this are called arbitrary-precision
arithmetic packages; an example is the gnu mp library5.

Be forewarned, however, that arbitrary-precision arithmetic packages are not
a panacea for numerical woes. The basic issue is that, whereas single-precision

5http://gmplib.org
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and double-precision floating-point arithmetic operations are performed in hard-
ware, arbitrary-precision operations are performed in software, incurring massive
overhead costs that may well run to 100× or greater. So you should think of
arbitrary-precision packages as somewhat extravagant luxuries, to be resorted
to only in rare cases when there is absolutely no other way to do what you need.
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7 Roots can be found more accurately than ex-
trema

(Note: This is a section of the lecture notes on numerical root-finding that I am
reproducing here because it kinda belongs in both places.)

An important distinction between numerical root-finding (numerically de-
termining zeroes of a function) and derivative-free numerical optimization (nu-
merically determining minima or maxima) is that the former can generally be
done much more accurately. Indeed, if a function f(x) has a root at a point
x0, then in many cases we will be able to approximate x0 to roughly machine
precision—that is, to 15-decimal-digit accuracy on a typical modern computer.
In contrast, if f(x) has an extremum at x0, then in general we will only be
able to pin down the value of x0 to something like the square root of machine
precision—that is, to just 8-digit accuracy! This is a huge loss of precision
compared to the root-finding case.

To understand the reason for this, suppose f has a minimum at x0, and let
the value of this minimum be f0 ≡ f(x0). Then, in the vicinity of x0, f has a
Taylor-series expansion of the form

f(x) = f0 +
1

2
(x− x0)2f ′′(x0) +O

(
(x− x0)3

)
(8)

where the important point is that the linear term is absent because the derivative
of f vanishes at x0.

Now suppose we try to evaluate f at floating-point numbers lying very close
to, but not exactly equal to, the nearest floating-point representation of x0.
(Actually, for the purposes of this discussion, let’s assume that x0 is exactly
floating-point representable, and moreover that the magnitudes of x0, f0, and
f ′′(x0) are all on the order of 1. The discussion could easily be extended to
relax these assumptions at the expense of some cluttering of the ideas.) In
64-bit floating-point arithmetic, where we have approximately 15-decimal-digit
registers, the floating-point numbers that lie closest to x0 without being equal
to x0 are something like6 xnearest ≈ x0 ± 10−15. We then find

f(xnearest) = f0︸︷︷︸
∼1.0

+
1

2
(x− x0)2︸ ︷︷ ︸
∼1.0e-30

f ′′(x0) +O
(

(x− x0)3︸ ︷︷ ︸
∼1.0e-45

)
.

Since xnearest deviates from x0 by something like 10−15, we find that f(xnearest)
deviates from f(x0) by something like 10−30, i.e. the digits begin to disagree in
the 30th decimal place. But our floating-point registers can only store 15 decimal
digits, so the difference between f(x0) and f(xnearest) is completely lost; the two
function values are utterly indistinguishable to our computer.

Moreover, as we consider points x lying further and further away from x0,
we find that f(x) remains floating-point indistinguishable from f(x0) over a

6This is where the assumption that |x0| ∼ 1 comes in; the more general statement would be
that the nearest floating-point numbers not equal to x0 would be something like x0±10−15|x0|.
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wide interval near x0. Indeed, the condition that f(x) be floating-point distinct
from f(x0) requires that (x − x0)2 fit into a floating-point register that is also
storing f0 ≈ 1. This means that we need7

(x− x0)2 & εmachine (9)

or

(x− x0) &
√
εmachine (10)

This explains why, in general, we can only pin down minima to within the
square root of machine precision, i.e. to roughly 8 decimal digits on a modern
computer.

On other hand, suppose the function g(x) has a root at x0. In the vicinity
of x0 we have the Taylor expansion

g(x) = (x− x0)g′(x0) +
1

2
(x− x0)2g′′(x0) + · · · (11)

which differs from (8) by the presence of a linear term. Now there is generally
no problem distinguishing g(x0) from g(xnearest) or g at other floating-point
numbers lying within a few machine epsilons of x0, and hence in general we will
be able to pin down the value of x0 to close to machine precision. (Note that
this assumes that g has only a single root at x0; if g has a double root there,
i.e. g′(x0) = 0, then this analysis falls apart. Compare this to the observation
we made earlier that the convergence of Newton’s method is worse for double
roots than for single roots.)

Figures 7 illustrates these points. The upper panel in this figure plots,
for the function f(x) = f0 + (x − x0)2 [corresponding to equation (8) with
x0 = f0 = 1

2f
′′(x0) = 1], the deviation of f(x) from its value at f(x0) versus the

deviation of x from x0 as computed in standard 64-bit floating-point arithmetic.
Notice that f(x) remains indistinguishable from f(x0) until x deviates from x0
by at least 10−8; thus a computer minimization algorithm cannot hope to pin
down the location of x0 to better than this accuracy.

In contrast, the lower panel of Figure 7 plots, for the function g(x) = (x−x0)
[corresponding to equation (11) with x0 = g′(x0) = 1], the deviation of g(x) from
g(x0) versus the deviation of x from x0, again as computed in standard 64-bit
floating-point arithmetic. In this case our computer is easily able to distinguish
points x that deviate from x0 by as little as 2 · 10−16. This is why numerical
root-finding can, in general, be performed with many orders of magnitude better
precision than minimization.

7This is where the assumptions that |f0| ∼ 1 and |f ′′(x0)| ∼ 1 come in; the more general
statement would be that we need (x− x0)2|f ′′(x0)| & εmachine · |f0|.
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Figure 9: In standard 64-bit floating-point arithmetic, function extrema can
generally be pinned down only to roughly 8-digit accuracy (upper), while roots
can typically be identified with close to 15-digit accuracy (lower).
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A How much information is required to specify
a number?

At the beginning of these notes we noted that specifying the number π requires
an infinite quantity of information. This might seem strange to you if you have
ever used a computer algebra system8like mathematica, in which one only
need type Pi—two characters, a highly finite amount of information—to specify
the quantity in question to infinite precision! Of course, what is happening
here is that with mathematica we agree in advance to pre-select some finite
set of special real numbers like π and e, then agree on a labeling or indexing
convention for the elements of this finite set, in which case we can clearly describe
any element of the set using only finitely much information.

The more interesting question to ask is this: Given an arbitrary real num-
ber x ∈ R, how much information is required to communicate this number to
another person (our counterpart) in the absence of any predefined finite set of
special values? (And by “communicate” we mean really communicate, as in,
our communication must suffice to enable our counterpart to pinpoint the exact
point x ∈ R, not some point in its vicinity such as a rational approximation.)
The answer to this question properly belongs in the domain of computational
complexity theory and specifically the field of computability theory, but here’s a
ranking of some categories of numbers in order of increasing information content.

• Integers. Integers are the lowest-information-content of all numbers: any
integer may be represented by finite string of decimal digits (or binary
digits, or digits in whatever base we like) and thus we may communicate
any integer x to our counterpart by simply transmitting its finitely many
digits.

• Non-integer rational numbers. Non-integer rational numbers may have
infinitely many decimal digits in their decimal expansion (such as 2

7 ) or
in their binary expansion (such as 1

10 ), but any rational number can be
represented as a ratio of two integers. Thus, to communicate a rational
number x = p

q to our counterpart, we can always just communicate the
integers p and q, each of which again requires only finite information.

8In a numerical math system like matlab or julia one has similarly the built-in constant
pi; however, the situation here is quite different from that of mathematica. In matlab/julia,
the symbol pi refers to the best floating-point approximation to π that is available on the
hardware you are using; this is a rational number that approximates π to (typically) 15
or so digits, but is not equal to π. In contrast, in mathematica the symbol Pi specifies
abstractly the exact number π, in the sense of the labeling/indexing scheme described in the
text. If you ask mathematica to print out a certain number of digits of Pi, you will get a
rational approximation similar to that in julia; however, in mathematica you can ask for any
number of these digits, and moreover a calculation such as Exp[I*Pi/4] will yield the exact

number
√

2
2

(1 + i), represented abstractly by a symbol. In contrast, in julia the calculation

exp(im*pi/4.0) will yield a rational number number that approximates
√
2

2
(1 + i) to roughly

15 digits). Be aware of this distinction between symbolic math software and numerical math
software!
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• Irrational algebraic numbers. Because irrational numbers like
√

2 cannot
be represented as ratios of integers, one might think their specification re-
quires an infinite quantity of information. However, within the irrationals
lives a subset of numbers that maybe specified with finite information:
the algebraic numbers, defined as the roots of polynomials with rational
coefficients. Thus, the number x =

√
2, though irrational, satisfies the

equation x2 + 0x − 2 = 0 and is thus an algebraic number; similarly, the
roots of the polynomial 7x3+ 4

3x
2+9 are algebraic numbers. If we tried to

specify these numbers to our counterpart by communicating their digits
(in any base), we would have to send an infinite amount of information;
but we just send the coefficients of the polynomials that define them we
can specify the exact numbers using only finitely much information.

• Transcendental numbers. Finally, we come to the transcendental numbers.
These are real numbers like π or e which are not the roots of any polyno-
mial with rational coefficients9 and which thus cannot be communicated
to our counterpart using only a finitely amount of information.

9If we allow non-rational coefficients, then the numbers π and e are, of course, the roots
of polynomials (for example, π is a root of x− π = 0), but that’s cheating. Also, π and e are
the the roots of non-polynomial equations which may be written in the form of infinite power
series: for example, π is a root of

sinx = x−
x3

6
+

x5

120
+ · · · = 0

and e− 1 is a root of

−1 + ln
[
1 + x

]
= −1 + x−

x2

2
+
x3

3
+ · · · = 0.

However, this is also cheating, because polynomials by definition must have only finitely many
terms.
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