
Chapter 10

Sequence Modeling: Recurrent

and Recursive Nets

Recurrent neural networks RNNs et al.or (Rumelhart , 1986a) are a family of neural
networks for handling sequential data. Sequential data is data where each example
consists of a sequence, with each example able to have a different sequence length.

To go from multi-layer networks to recurrent networks, we need take advantage
of one of the early ideas found in machine learning and statistical models of the
1980s: sharing parameters across different parts of a model. Parameter sharing
makes it possible to extend and apply the model to examples of different forms
(different lengths, here) and generalize across them. If we had separate parameters
for each value of the time index, we could not generalize to sequence lengths not
seen during training, nor share statistical strength across different sequence lengths
and across different positions in time. Such sharing is particularly important when
the important part of a sequence can occur at an arbitrary point in the sequence.
For example, consider the two sentences “I went to Nepal in 2009” and “In 2009,
I went to Nepal.” If we ask a machine learning model to read each sentence and

extract the year in which the narrator went to Nepal, we would like it to recognize
the year 2009 as the relevant piece of information, whether it appears in the sixth
word or the second word of the sentence. Suppose that we trained a feedforward
network that processes sentences of fixed length. A traditional fully connected
feedforward network would have separate parameters for each input feature, so it
would need to learn all of the rules of the language separately at each position in
the sentence. By comparison, a recurrent neural network shares the same weights
across several time steps.

A related idea is the use of convolution across a 1-D temporal sequence. This

375

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

convolutional approach is the basis for time-delay neural networks (Lang and
Hinton, 1988; Waibel et al., 1989). The convolution operation allows a network
to share parameters across time, but is shallow. The output of convolution is a
sequence where each member of the output is a function of a small number of
neighboring members of the input. The idea of parameter sharing manifests in the
application of the same convolution kernel at each time step. Recurrent networks
share parameters in a different way. Each member of the output is a function of
the previous members of the output. Each member of the output is produced using
the same update rule applied to the previous outputs. This recurrent formulation

results in the sharing of parameters through a very deep computational graph.

For the simplicity of exposition, we refer to RNNs as operating on a sequence
that contains vectors x()t with the time step index t ranging from to1 τ . In
practice, recurrent networks usually operate on minibatches of such sequences,
with a different sequence length τ for each member of the minibatch. We have
omitted the minibatch indices to simplify notation. Moreover, the time step index
need not literally refer to the passage of time in the real world, but only to the
position in the sequence. RNNs may also be applied in two dimensions across
spatial data such as images, and even when applied to data involving time, the
network may have connections that go backwards in time, provided that the entire
sequence is observed before it is provided to the network.

This chapter extends the idea of a computational graph, introduced in Sec.
6.5.1, to include cycles. These cycles represent the influence of the present value of
a variable on its own value at a future time step. Such computational graphs allow
us to define recurrent neural networks. We then describe many different ways to
construct, train, and use recurrent neural networks.

For more information on recurrent neural networks than is available in this
chapter, we refer the reader to the textbook of Graves (2012).

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to Sec. 6.5.1 for a general introduction. In this section we explain
the idea of a recursive or recurrent computation into a computationalunfolding
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

376

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

For example, consider the classical form of a dynamical system:

s()t = (f s(1)t− ;)θ , (10.1)

where s ()t is called the state of the system.

Eq. 10.1 is recurrent because the definition of s at time t refers back to the
same definition at time t − 1.

For a finite number of time steps τ , the graph can be unfolded by applying the
definition τ − 1 times. For example, if we unfold Eq. 10.1 for τ = 3 time steps, we
obtain

s(3) = (f s(2);)θ

= ((f f s(1););)θ θ (10.2)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of Eq. 10.1 and Eq. 10.2 is illustrated in Fig. 10.1.

s(t1)s(t1) s()ts()t s(+1)ts(+1)t

ff
s()...s()... s()...s()...

ff ff ff

Figure 10.1: Classical dynamical system Eq. 10.1 illustrated as an unfolded computational
graph. Each node represents the state at some time t and the function f maps the state
at t to the state at t+ 1. The same parameters (the same value of θ used to parametrize
f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external

signal x()t ,
s()t = (f s(1)t− ,x()t ;)θ , (10.3)

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as
almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. 10.4 or a similar equation to define
the values of their hidden units. To indicate that the state is the hidden units of
the network, we now rewrite Eq. 10.3 using the variable to represent the state:h

h()t = (f h(1)t− ,x()t ;)θ , (10.4)

377

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

illustrated in Fig. 10.2, Typical RNNs will add extra architectural features such as
output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h()t as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t . This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x ()t ,x(1)t− ,x(2)t− , . . . ,x(2) ,x (1)) to a fixed length vector h ()t . Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t , but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h()t to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(Chapter 14).

ff

hh

xx

h(t1)h(t1) h()th()t h(+1)th(+1)t

x(t1)x(t1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. 10.4 can be drawn in two different ways. One way to draw the RNN is
with a diagram containing one node for every component that might exist in a
physical implementation of the model, such as a biological neural network. In
this view, the network defines a circuit that operates in real time, with physical
parts whose current state can influence their future state, as in the left of Fig. 10.2.
Throughout this chapter, we use a black square in a circuit diagram to indicate
that an interaction takes place with a delay of 1 time step, from the state at time
t to the state at time t + 1. The other way to draw the RNN is as an unfolded
computational graph, in which each component is represented by many different
variables, with one variable per time step, representing the state of the component

at that point in time. Each variable for each time step is drawn as a separate node

378

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

of the computational graph, as in the right of Fig. 10.2. What we call isunfolding
the operation that maps a circuit as in the left side of the figure to a computational
graph with repeated pieces as in the right side. The unfolded graph now has a size
that depends on the sequence length.

The unfolding process offers two major advantages over simply constructing a
function of the full sequence x()t for .t , . . . , τ= 1

We can represent the unfolded recurrence after steps with a functiont g()t :

h ()t =g()t (x ()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1))

= (f h(1)t− ,x()t ;)θ (10.5)

The function g()t takes the whole past sequence (x()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1))
as input and produces the current state.

Rather than using the recursive definition of g()t that applies f at each time
step, one could imagine defining a different function g()t for each possible sequence
length (imagine a separate neural network, each with a different input size), each
with its own parameters. Such an approach would generalize only to sequences of

the same length as those seen in the training set. Furthermore, one would need
to see significantly more training examples, because a separate model would have
to be trained for each sequence length, and each model would need significantly
more parameters (proportional to the size of the input sequence). The recursive

definition allows us to learn a transition function f with a fixed number of inputs
rather than learning a set of g()t functions that each have a different input size.

Another advantage of the unfolding process is that the same function withf
the same parameters θ is used at each time step. One could instead imagine
a model with a separate f ()t with parameters θ()t for each time step t. Such a
model would have the same connectivity as a recurrent neural network, but lack
its parameter sharing scheme (just as a locally connected layer of a convolutional
network has the same connectivity pattern as convolution, but lacks the weight
sharing of convolution). The model without sharing would require significantly
more memory to store its parameters and significantly more training data in order
to observe all interesting patterns in the input happening at all time steps t.
Sharing parameters by using the same θ everywhere that f is applied during the
graph unrolling process allows recurrent neural networks to detect a pattern in the
input regardless of the time at which the pattern begins.

Both the recurrent graph and the unrolled graph have their uses. The recurrent
graph is succint. The unfolded graph provides an explicit description of which
computations to perform. The unfolded graph also helps to illustrate the idea of

379

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. 10.1, we can
design a wide variety of recurrent neural networks.

UU

VV

WW

o(t1)o(t1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t1)L(t1) L()tL()t L(+1)tL(+1)t

y (t1)y (t1) y()ty()t y (+1)ty (+1)t

h(t1)h(t1) h()th()t h(+1)th(+1)t

x(t1)x(t1) x()tx()t x(+1)tx(+1)t

WWWW WW WW

h()...h()... h()...h()...

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. The
RNN has input to hidden connections parametrized by a weight matrix U , hidden-to-
hidden recurrent connections parametrized by a weight matrix W, and hidden-to-output
connections parametrized by a weight matrix V . Eq. 10.6 defines forward propagation in
this model. (Left) The RNN and its loss drawn with recurrent connections. The(Right)
same seen as an time-unfolded computational graph, where each node is now associated
with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
recurrent connections between hidden units, illustrated in Fig. 10.3.

380

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

• Recurrent networks that produce an output at each time step and have
recurrent connections only from the output at one time step to the hidden
units at the next time step, illustrated in Fig. 10.4

• Recurrent networks with recurrent connections between hidden units, that
read an entire sequence and then produce a single output, illustrated in Fig.
10.5.

Fig. 10.3 is a reasonably representative example that we return to throughout
most of the chapter.

The recurrent neural network of Fig. 10.3 and Eq. 10.6 is universal in the
sense that any function computable by a Turing machine can be computed by such

a recurrent network of a finite size. The output can be read from the RNN after
a number of time steps that is asymptotically linear in the number of time steps
used by the Turing machine and asymptotically linear in the length of the input

(Siegelmann and Sontag, 1991; Siegelmann, 1995; Siegelmann and Sontag, 1995;
Hyotyniemi, 1996). The functions computable by a Turing machine are discrete,
so these results regard exact implementation of the function, not approximations.
The RNN, when used as a Turing machine, takes a binary sequence as input and its
outputs must be discretized to provide a binary output. It is possible to compute all

functions in this setting using a single specific RNN of finite size (Siegelmann and
Sontag (1995) use 886 units). The “input” of the Turing machine is a specification
of the function to be computed, so the same network that simulates this Turing

machine is sufficient for all problems. The theoretical RNN used for the proof
can simulate an unbounded stack by representing its activations and weights with
rational numbers of unbounded precision.

We now develop the forward propagation equations for the RNN depicted in
Fig. 10.3. The figure does not specify the choice of activation function for the

hidden units. Here we assume the hyperbolic tangent activation function. Also,
the figure does not specify exactly what form the output and loss function take.
Here we assume that the output is discrete, as if the RNN is used to predict words
or characters. A natural way to represent discrete variables is to regard the output
o as giving the unnormalized log probabilities of each possible value of the discrete
variable. We can then apply the softmax operation as a post-processing step to
obtain a vector ŷ of normalized probabilities over the output. Forward propagation
begins with a specification of the initial state h(0) . Then, for each time step from

381

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

U

V

W

o(t1)o(t1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t1)L(t1) L()tL()t L(+1)tL(+1)t

y(t1)y(t1) y ()ty ()t y(+1)ty(+1)t

h(t1)h(t1) h()th()t h(+1)th(+1)t

x(t1)x(t1) x()tx()t x(+1)tx(+1)t

WW W W

o()...o()...

h()...h()...

V V V

U U U

Unfold

Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is xt, the hidden layer activations are
h ()t , the outputs are o()t , the targets are y()t and the loss is L()t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. 10.3. The RNN
in Fig. 10.3 can choose to put any information it wants about the past into its hidden
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. 10.2.1.

382

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

t t τ= 1 to = , we apply the following update equations:

a()t = +b Wh (1)t− + Ux()t

h()t = tanh(a()t)

o()t = +c V h ()t

ŷ()t = softmax(o()t) (10.6)

where the parameters are the bias vectors b and c along with the weight matrices
U , V andW , respectively for input-to-hidden, hidden-to-output and hidden-to-
hidden connections. This is an example of a recurrent network that maps an
input sequence to an output sequence of the same length. The total loss for a

given sequence of values paired with a sequence of values would then be justx y
the sum of the losses over all the time steps. For example, if L()t is the negative

log-likelihood of y()t given x (1), . . . ,x ()t , then

L({x(1), . . . ,x()τ } {, y(1), . . . ,y()τ }) =


t

L()t =


t

− log ŷ
()t

y()t
. (10.7)

Computing the gradient of this loss function with respect to the parameters is

an expensive operation. The gradient computation involves performing a forward
propagation pass moving left to right through our illustration of the unrolled graph

in Fig. 10.3, followed by a backward propagation pass moving right to left through
the graph. The runtime is O (τ) and cannot be reduced by parallelization because
the forward propagation graph is inherently sequential; each time step may only
be computed after the previous one. States computed in the forward pass must be
stored until they are reused during the backward pass, so the memory cost is also
O(τ). The back-propagation algorithm applied to the unrolled graph with O(τ)
cost is called back-propagation through time BPTTor and is discussed further Sec.
10.2.2. The network with recurrence between hidden units is thus very powerful
but also expensive to train. Is there an alternative?

10.2.1 Teacher Forcing and Networks with Output Recurrence

The network with recurrent connections only from the output at one time step to
the hidden units at the next time step (shown in Fig. 10.4) is strictly less powerful
because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture

383

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t , all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t1)h(t1)
W

h()th()t
.

x(t1)x(t1) x()tx()t x()...x()...

W W

U U U

h()⌧h()⌧

x()⌧x()⌧

W

U

o()⌧o()⌧y()⌧y()⌧

L()⌧L()⌧

V

.

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o()t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into

the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y()t as input at time t+ 1. We can see
this by examining a sequence with two time steps. The conditional maximum
likelihood criterion is

log p

y(1),y(2) | x(1) ,x(2)



= log p

y(2) | y(1),x(1) ,x(2)


+ log p


y (1) | x(1),x(2)


(10.8)

In this example, we see that at time t = 2, the model is trained to maximize the
conditional probability of y(2) givenboth the x sequence so far and the previous y

384

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t1)o(t1) o()to()t

h(t1)h(t1) h()th()t

x(t1)x(t1) x()tx()t

W
V V

U U

o(t1)o(t1) o()to()t

L(t1)L(t1) L()tL()t

y (t1)y (t1) y()ty()t

h(t1)h(t1) h()th()t

x(t1)x(t1) x()tx()t

W

V V

U U

Train time Test time

Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) At train time, we feed the correct output y()t drawn from the train
set as input to h (+1)t . (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y()t with the model’s output
o ()t , and feed the output back into the model.

385

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

value from the training set. Maximum likelihood thus specifies that during training,
rather than feeding the model’s own output back into itself, these connections
should be fed with the target values specifying what the correct output should be.
This is illustrated in Fig. 10.6.

We originally motivated teacher forcing as allowing us to avoid back-propagation
through time in models that lack hidden-to-hidden connections. Teacher forcing
may still be applied to models that have hidden-to-hidden connections so long as
they have connections from the output at one time step to values computed in the
next time step. However, as soon as the hidden units become a function of earlier

time steps, the BPTT algorithm is necessary. Some models may thus be trained
with both teacher forcing and BPTT.

The disadvantage of strict teacher forcing arises if the network is going to be
later used in an open-loop mode, with the network outputs (or samples from the
output distribution) fed back as input. In this case, the kind of inputs that the
network sees during training could be quite different from the kind of inputs that
it will see at test time. One way to mitigate this problem is to train with both
teacher-forced inputs and with free-running inputs, for example by predicting the
correct target a number of steps in the future through the unfolded recurrent

output-to-input paths. In this way, the network can learn to take into account
input conditions (such as those it generates itself in the free-running mode) not

seen during training and how to map the state back towards one that will make
the network generate proper outputs after a few steps. Another approach (Bengio
et al., 2015b) to mitigate the gap between the inputs seen at train time and the
inputs seen at test time randomly chooses to use generated values or actual data
values as input. This approach exploits a curriculum learning strategy to gradually
use more of the generated values as input.

10.2.2 Computing the Gradient in a Recurrent Neural Network

Computing the gradient through a recurrent neural network is straightforward.
One simply applies the generalized back-propagation algorithm of Sec. 6.5.6 to the

unrolled computational graph. No specialized algorithms are necessary. The use
of back-propagation on the unrolled graph is called the back-propagation through
time (BPTT) algorithm. Gradients obtained by back-propagation may then be
used with any general-purpose gradient-based techniques to train an RNN.

To gain some intuition for how the BPTT algorithm behaves, we provide an
example of how to compute gradients by BPTT for the RNN equations above
(Eqs. 10.6 and 10.7). The nodes of our computational graph include the parameters

386

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

U , V , W, b and c as well as the sequence of nodes indexed by t for x()t , h()t ,
o ()t and L()t . For each nodeN we need to compute the gradient ∇N L recursively,
based on the gradient computed at nodes that follow it in the graph. We start the
recursion with the nodes immediately preceding the final loss

∂L

∂L ()t
= 1. (10.9)

In this derivation we assume that the outputs o()t are used as the argument to the
softmax function to obtain the vector ŷ of probabilities over the output. We also
assume that the loss is the negative log-likelihood of the true target y()t given the
input so far. The gradient ∇o()t L on the outputs at time step t, for all i, t, is as
follows:

(∇o()t L)i =
∂L

∂o
()t

i

=
∂L

∂L()t
∂L()t

∂o
()t

i

= ŷ
()t
i − 1i,y()t . (10.10)

We work our way backwards, starting from the end of the sequence. At the final
time step ,τ h ()τ only has o()τ as a descendent, so its gradient is simple:

∇
h()τ
L = (∇

o()τ
L)
∂o()τ

∂h()τ
= (∇

o ()τ
L .)V (10.11)

We can then iterate backwards in time to back-propagate gradients through time,
from t = τ − 1 down to t = 1, noting that h()t (for t < τ) has as descendents both

o ()t and h(+1)t . Its gradient is thus given by

∇h()t L = (∇h(+1)t L)
∂h (+1)t

∂h()t
+ (∇o ()tL)

∂o ()t

∂h()t
(10.12)

= (∇
h(+1)t L) diag


1 −


h(+1)t

2
W + (∇

o()t
L)V (10.13)

where diag


1 −

h(+1)t

 2
indicates the diagonal matrix containing the elements

1 − (h
(+1)t
i)2 . This is the Jacobian of the hyperbolic tangent associated with the

hidden unit at time .i t + 1

Once the gradients on the internal nodes of the computational graph are ob-
tained, we can obtain the gradients on the parameter nodes, which have descendents

387

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at all the time steps:

∇cL =


t

(∇
o()t
L)
∂o()t

∂c
=



t

∇
o()t
L

∇bL =


t

(∇h()t L)
∂h()t

∂b
=



t

(∇h()t L) diag


1 −


h()t

2

∇VL =


t

(∇o()t L)
∂o()t

∂V
=



t

(∇o()t L)h()t


∇WL =


t

(∇h()t L)
∂h()t

∂W
=



t

(∇h()t L) diag


1 −


h
()t
2

h
(1)t− 

∇UL =


t

(∇h()t L)
∂h()t

∂U
=



t

(∇h()t L) diag


1 −


h()t

2
x ()t



We do not need to compute the gradient with respect to x()t for training because

it does not have any parameters as ancestors in the computational graph defining
the loss.

We are abusing notation somewhat in the above equations. We correctly use
∇h()t L to indicate the full influence of h()t through all paths from h()t to L . This

is in contrast to our usage of ∂h
()t

∂W
or ∂h

()t

∂b
, which we use here in an unconventional

manner. By ∂h()t

∂W we refer to the effect ofW on h()t only via the use ofW at time
step t . This is not standard calculus notation, because the standard definition of
the Jacobian would actually include the complete influence of W onh ()t via its
use in all of the preceding time steps to produce h(1)t− . What we refer to here is
in fact the bprop method of Sec. 6.5.6, that computes the contribution of a single
edge in the computational graph to the gradient.

10.2.3 Recurrent Networks as Directed Graphical Models

In the example recurrent network we have developed so far, the losses L()t were
cross-entropies between training targets y()t and outputs o()t . As with a feedforward
network, it is in principle possible to use almost any loss with a feedforward network.
The loss should be chosen based on the task. As with a feedforward network, we
usually wish to interpret the output of the RNN as a probability distribution, and
we usually use the cross-entropy associated with that distribution to define the loss.
Mean squared error is the cross-entropy loss associated with an output distribution
that is a unit Gaussian, for example, just as with a feedforward network.

388

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

When we use a predictive log-likelihood training objective, such as Eq. 10.7, we
train the RNN to estimate the conditional distribution of the next sequence element
y ()t given the past inputs. This may mean that we maximize the log-likelihood

log (p y ()t | x(1), . . . ,x()t), (10.14)

or, if the model includes connections from the output at one time step to the next

time step,
log (p y ()t | x(1), . . . ,x()t ,y(1), . . . ,y(1)t−). (10.15)

Decomposing the joint probability over the sequence of y values as a series of
one-step probabilistic predictions is one way to capture the full joint distribution
across the whole sequence. When we do not feed past y values as inputs that
condition the next step prediction, the directed graphical model contains no edges
from any y()i in the past to the current y()t . In this case, the outputs y are

conditionally independent given the sequence of x values. When we do feed the
actual y values (not their prediction, but the actual observed or generated values)
back into the network, the directed graphical model contains edges from all y()i

values in the past to the current y ()t value.

y (1)y (1) y(2)y(2) y(3)y(3) y(4)y(4) y(5)y(5) y ()...y ()...

Figure 10.7: Fully connected graphical model for a sequence y(1), y (2), . . . , y ()t , . . .: every
past observation y()i may influence the conditional distribution of some y ()t (for t > i),
given the previous values. Parametrizing the graphical model directly according to this
graph (as in Eq. 10.5) might be very inefficient, with an ever growing number of inputs
and parameters for each element of the sequence. RNNs obtain the same full connectivity
but efficient parametrization, as illustrated in Fig. 10.8.

As a simple example, let us consider the case where the RNN models only a
sequence of scalar random variables Y = {y (1), . . . , y()τ } , with no additional inputs
x. The input at time step t is simply the output at time step t−1. The RNN then

389

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

defines a directed graphical model over the y variables. We parametrize the joint
distribution of these observations using the chain rule (Eq. 3.6) for conditional
probabilities:

P (Y) = (P y(1) , . . . ,y()τ) =
τ

t=1

P (y()t | y(1)t− ,y(2)t− , . . . ,y(1)) (10.16)

where the right-hand side of the bar is empty for t = 1, of course. Hence the
negative log-likelihood of a set of values {y(1) , . . . , y ()τ } according to such a model
is

L =


t

L()t (10.17)

where
L()t = log (− P y()t = y ()t | y(1)t− , y (2)t− , . . . , y(1)). (10.18)

y(1)y(1) y(2)y(2) y(3)y(3) y(4)y(4) y(5)y(5) y ()...y ()...

h(1)h(1) h(2)h(2) h(3)h(3) h(4)h(4) h(5)h(5) h()...h()...

Figure 10.8: Introducing the state variable in the graphical model of the RNN, even
though it is a deterministic function of its inputs, helps to see how we can obtain a very
efficient parametrization, based on Eq. 10.4. Every stage in the sequence (for h()t and
y()t) involves the same structure (the same number of inputs for each node) and can share
the same parameters with the other stages.

The edges in a graphical model indicate which variables depend directly on other
variables. Many graphical models aim to achieve statistical and computational
efficiency by omitting edges that do not correspond to strong interactions. For

example, it is common to make the Markov assumption that the graphical model
should only contain edges from {y()t k− , . . . , y(1)t− } to y()t , rather than containing
edges from the entire past history. However, in some cases, we believe that all past
inputs should have an influence on the next element of the sequence. RNNs are
useful when we believe that the distribution over y()t may depend on a value of y()i

from the distant past in a way that is not captured by the effect of y()i on y(1)t− .

One way to interpret an RNN as a graphical model is to view the RNN as
defining a graphical model whose structure is the complete graph, able to represent
direct dependencies between any pair of y values. The graphical model over the

390

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

y values with the complete graph structure is shown in Fig. 10.7. The complete
graph interpretation of the RNN is based on ignoring the hidden units h()t by
marginalizing them out of the model.

It is more interesting to consider the graphical model structure of RNNs that
results from regarding the hidden units h()t as a random variable. The hidden
units are a deterministic function of their inputs, so it may seem unusual to regard
them as random variables. However, it is perfectly legitimate to regard them as
random variables. The RNN defines conditional probability distribution over the
hidden units given their inputs; the conditional distribution just happens to be a

probability distribution that assigns probability to a single state and probability1
0 to all other states. Including the hidden units in the graphical model reveals
that the RNN provides a very efficient parametrization of the joint distribution
over the observations. Suppose that we represented an arbitrary joint distribution
over discrete values with a tabular representation. If y can take on k different
values, the tabular representation would have O(k τ) parameters. By comparison,
due to parameter sharing, the number of parameters in the RNN is O(1) as a
function of sequence length. Eq. 10.4 shows that the RNN parametrizes long-term
relationships between variables efficiently, using recurrent applications of the same
function f and same parameters θ at each time step. Fig. 10.8 illustrates the
graphical model interpretation. Incorporating the h()t nodes in the graphical model
decouples that past and the future, acting as an intermediate quantity between
them. A variable y()i in the distant past may influence a variable y()t via its

effect on h . The structure of this graph shows that the model can be efficiently
parametrized by using the same conditional probability distributions at each time

step, and that when the variables are all observed, the probability of the joint
assignment of all variables can be evaluated efficiently.

Even with the efficient parametrization of the graphical model, some operations
remain computationally challenging. For example, it is difficult to predicting
missing values in the middle of the sequence.

The statistical complexity of the RNN may be flexibly adjusted by changing the
complexity of the function f (h(1)t− ;x()t) that produces the state variable. Crucially,

the complexity of this function (as measured by the number of free parameters θ) is
not forced to increase with sequence length. This stands in contrast to the approach
of controlling statistical complexity by modifying the graph structure of a directed
graphical model. A graphical model defined over discrete variables using a table to

implement the conditional probability distribution P (y()t | y (1)t− , y (2)t− , . . . , y(1))
would require an amount of parameters (table entries) that grows exponentially
with t. The graphical model of recurrent networks is directed and decomposes the

391

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

probability distribution as a product of conditionals without explicitly cutting any
arc in the graphical model.

The price recurrent networks pay for their reduced number of parameters is
that the parameters may be difficult.optimizing

The parameter sharing used in recurrent networks relies on the assumption
that the same parameters can be used for different time steps. Equivalent, the
assumption is that conditional probability distribution over the variables at time
t + 1 given the varibales at time t is stationary, meaning that the relationship
between the previous time step and the next time step does not depend on t. In

principle, it would be possible to use t as an extra input at each time step and let

the learner discover any time-dependence while sharing as much as it can between
different time steps. This would already be much better than using a different
conditional probability distribution for each t, but the network would then have to
extrapolate when faced with new values of .t

To complete our view of an RNN as a graphical model, we must describe how
to draw samples from the model. The main operation that we need to perform is
simply to sample from the conditional distribution at each time step. However,
there is one additional complication. The RNN must have some mechanism for

determining the length of the sequence. This can be achieved in various ways.

In the case when the output is a symbol taken from a vocabulary, one can
add a special symbol corresponding to the end of a sequence (Schmidhuber, 2012).
When that symbol is generated, the sampling process stops. In the training set,
we insert this symbol as an extra member of the sequence, immediately after x()τ

in each training example.

Another option is to introduce an extra Bernoulli output to the model that
represents the decision to either continue generation or halt generation at each
time step. This approach is more general than the approach of adding an extra

symbol to the vocabulary, because it may be applied to any RNN, rather than
only RNNs that output a sequence of symbols. For example, it may be applied to

an RNN that emits a sequence of real numbers. The new output unit is usually a
sigmoid unit trained with the cross-entropy loss. In this approach the sigmoid is

trained to maximize the log-probability of the correct prediction as to whether the
sequence ends or continues at each time step.

Another way to determine the sequence length τ is to add an extra output to
the model that predicts the integer τ itself. The model can sample a value of τ

and then sample τ steps worth of data. This approach requires adding an extra
input to the recurrent update at each time step so that the recurrent update is
aware of whether it is near the end of the generated sequence. This extra input

392

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

can either consist of the value of τ or can consist of τ t− , the number of remaining
time steps. Without this extra input, the RNN might generate sequences that
end abruptly, such as a sentence that ends before it is complete. This approach is
based on the decomposition

P (x(1) , . . . ,x()τ) = (P τ P) (x(1), . . . ,x ()τ | τ .) (10.19)

The strategy of predicting τ directly is used for example by Goodfellow et al.
(2014d).

10.2.4 Modeling Sequences Conditioned on Context with RNNs

In the previous section we described how an RNN could correspond to a directed
graphical model over a sequence of random variables y()t with no inputs x. Of

course, our development of RNNs as in Eq. 10.6 included a sequence of inputs
x(1),x (2), . . . ,x()τ . In general, RNNs allow the extension of the graphical model
view to represent not only a joint distribution over the y variables but also a
conditional distribution over y given x. As discussed in the context of feedforward
networks in Sec. 6.2.1.1, any model representing a variable P (y ; θ) can be reinter-
preted as model representing a conditional distribution P(y|ω) with ω= θ. We

can extend such a model to represent a distribution P (y x|) by using the same

P(y ω|) as before, but making ω a function of x. In the case of an RNN, this
can be achieved in different ways. We review here the most common and obvious
choices.

Previously, we have discussed RNNs that take a sequence of vectors x()t for
t = 1, . . . , τ as input. Another option is to take only a single vector x as input.
When x is a fixed-size vector, we can simply make it an extra input of the RNN
that generates the y sequence. Some common ways of providing an extra input to

an RNN are:

1. as an extra input at each time step, or

2. as the initial state h(0), or

3. both.

The first and most common approach is illustrated in Fig. 10.9. The interaction
between the input x and each hidden unit vector h()t is parametrized by a newly

introduced weight matrix R that was absent from the model of only the sequence
of y values. The same product xR is added as additional input to the hidden

393

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

units at every time step. We can think of the choice of x as determining the value
of xR that is effectively a new bias parameter used for each of the hidden units.
The weights remain independent of the input. We can think of this model as taking
the parameters θ of the non-conditional model and turning them into ω , where
the bias parameters within are now a function of the input.ω

o(t1)o(t1) o()to()t o(+1)to(+1)t

L(t1)L(t1) L()tL()t L(+1)tL(+1)t

y(t1)y(t1) y()ty()t y(+1)ty(+1)t

h(t1)h(t1) h()th()t h(+1)th(+1)t
WW W W

s()...s()...
h()...h()...

V V V

U U U

xx

y ()...y ()...

R R R R R

Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y ()t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).

Rather than receiving only a single vector x as input, the RNN may receive a
sequence of vectors x()t as input. The RNN described in Eq. 10.6 corresponds to a
conditional distribution P (y (1), . . . ,y()τ | y (1), . . . ,y()τ) that makes a conditional
independence assumption that this distribution factorizes as



t

P (y()t | x(1) , . . . ,x()t). (10.20)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. 10.10. The
model can then represent arbitrary probability distributions over the y sequence.

394

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t1)o(t1) o()to()t o(+1)to(+1)t

L(t1)L(t1) L()tL()t L(+1)tL(+1)t

y(t1)y(t1) y()ty()t y (+1)ty (+1)t

h(t1)h(t1) h()th()t h(+1)th(+1)t

WW W W

h()...h()... h()...h()...

V V V

U U U

x(t1)x(t1)

R

x()tx()t x(+1)tx(+1)t

R R

Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of xvalues into a distribution over sequences of y values of the same length. Compared
to Fig. 10.3, this RNN contains connections from the previous output to the current state.
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of of the same length. The RNN of Fig. 10.3 is only able to representx
distributions in which the yvalues are conditionally independent from each other given
the values.x

395

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. 10.4.

o(t1)o(t1) o()to()t o(+1)to(+1)t

L(t1)L(t1) L()tL()t L(+1)tL(+1)t

y(t1)y(t1) y()ty()t y (+1)ty (+1)t

h(t1)h(t1) h()th()t h(+1)th(+1)t

x(t1)x(t1) x()tx()t x(+1)tx(+1)t

g (t1)g (t1) g ()tg ()t g (+1)tg (+1)t

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y, with loss L()t at each step t .
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units o()t can benefit from a relevant summary of the past in its h()t

input and from a relevant summary of the future in its g ()t input.

10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc-
ture, meaning that the state at time t only captures information from the past,
x(1), . . . ,x(1)t− , and the present input x()t . Some of the models we have discussed
also allow information from past y values to affect the current state when the y
values are available.

396

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

However, in many applications we want to output a prediction of y()t which
may depend on the whole input sequence. For example, in speech recognition,
the correct interpretation of the current sound as a phoneme may depend on the
next few phonemes because of co-articulation and potentially may even depend on
the next few words because of the linguistic dependencies between nearby words: if
there are two interpretations of the current word that are both acoustically plausible,
we may have to look far into the future (and the past) to disambiguate them.
This is also true of handwriting recognition and many other sequence-to-sequence
learning tasks, described in the next section.

Bidirectional recurrent neural networks (or bidirectional RNNs) were invented
to address that need (Schuster and Paliwal, 1997). They have been extremely suc-
cessful (Graves, 2012) in applications where that need arises, such as handwriting
recognition (Graves , 2008; Graves and Schmidhuber, 2009), speech recogni-et al.
tion (Graves and Schmidhuber, 2005; Graves , 2013) and bioinformatics (Baldiet al.
et al., 1999).

As the name suggests, bidirectional RNNs combine an RNN that moves forward
through time beginning from the start of the sequence with another RNN that
moves backward through time beginning from the end of the sequence. Fig. 10.11

illustrates the typical bidirectional RNN, with h()t standing for the state of the
sub-RNN that moves forward through time and g()t standing for the state of the

sub-RNN that moves backward through time. This allows the output units o()t to
compute a representation that depends on both the past and the future but
is most sensitive to the input values around time t , without having to specify a
fixed-size window around t (as one would have to do with a feedforward network,
a convolutional network, or a regular RNN with a fixed-size look-ahead buffer).

This idea can be naturally extended to 2-dimensional input, such as images,
by having four RNNs, each one going in one of the four directions: up, down,
left, right. At each point (i, j) of a 2-D grid, an output Oi,j could then compute a

representation that would capture mostly local information but could also depend
on long-range inputs, if the RNN is able to learn to carry that information.
Compared to a convolutional network, RNNs applied to images are typically more

expensive but allow for long-range lateral interactions between features in the
same feature map (Visin , 2015; Kalchbrenner , 2015). Indeed, theet al. et al.
forward propagation equations for such RNNs may be written in a form that shows
they use a convolution that computes the bottom-up input to each layer, prior

to the recurrent propagation across the feature map that incorporates the lateral
interactions.

397

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in Fig. 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in Fig. 10.9 how an RNN can map a fixed-size vector to a
sequence. We have seen in Fig. 10.3, Fig. 10.4, Fig. 10.10 and Fig. 10.11 how an

RNN can map an input sequence to an output sequence of the same length.

Encoder

…

x(1)x(1) x(2)x(2) x()...x()... x(nx)x(nx)

Decoder

…

y (1)y (1) y(2)y(2) y ()...y ()... y(n y)y(n y)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . , y (ny)) given an input sequence
(x(1), x(2), . . . , x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question

398

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

answering, where the input and output sequences in the training set are generally
not of the same length (although their lengths might be related).

We often call the input to the RNN the “context.” We want to produce a
representation of this context, C . The context C might be a vector or sequence of
vectors that summarize the input sequence X x= ((1), . . . ,x(nx)).

The simplest RNN architecture for mapping a variable-length sequence to
another variable-length sequence was first proposed by Cho (2014a) andet al.
shortly after by Sutskever (2014b), who independently developed thatet al.
architecture and were the first to obtain state-of-the-art translation using this

approach. The former system is based on scoring proposals generated by another

machine translation system, while the latter uses a standalone recurrent network
to generate the translations. These authors respectively called this architecture,
illustrated in Fig. 10.12, the encoder-decoder or sequence-to-sequence architecture.
The idea is very simple: (1) an encoder reader inputor or RNN processes the
input sequence. The encoder emits the context C , usually as a simple function
of its final hidden state. (2) a decoder writer outputor or RNN is conditioned on
that fixed-length vector (just like in Fig. 10.9) to generate the output sequence
Y = (y(1) , . . . ,y(ny)). The innovation of this kind of architecture over those

presented in earlier sections of this chapter is that The lengths nx and n y can
vary from each other, while previous architectures constrained nx =ny = τ . In a

sequence-to-sequence architecture, the two RNNs are trained jointly to maximize
the average of logP (y (1), . . . ,y(n y) | x(1), . . . ,x(nx)) over all the pairs of x and y
sequences in the training set. The last state hn x of the encoder RNN is typically
used as a representation C of the input sequence that is provided as input to the
decoder RNN.

If the context C is a vector, then the decoder RNN is simply a vector-to-
sequence RNN as described in Sec. 10.2.4. As we have seen, there are at least two
ways for a vector-to-sequence RNN to receive input. The input can be provided as

the initial state of the RNN, or the input can be connected to the hidden units at
each time step. These two ways can also be combined.

There is no constraint that the encoder and the decoder must have the same

size of hidden layer.

One clear limitation of this architecture is when the context C output by the

encoder RNN has a dimension that is too small to properly summarize a long
sequence. This phenomenon was observed by Bahdanau (2014) in the contextet al.

of machine translation. They proposed to make C a variable-length sequence rather
than a fixed-size vector. Additionally, they introduced an attention mechanism
that learns to associate elements of the sequence C to elements of the output

399

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

sequence. See Sec. 12.4.5.1 for more details.

10.5 Deep Recurrent Networks

The computation in most RNNs can be decomposed into three blocks of parameters
and associated transformations:

1. from the input to the hidden state,

2. from the previous hidden state to the next hidden state, and

3. from the hidden state to the output.

With the RNN architecture of Fig. 10.3, each of these three blocks is associated
with a single weight matrix. In other words, when the network is unfolded, each
of these corresponds to a shallow transformation. By a shallow transformation,
we mean a transformation that would be represented by a single layer within a
deep MLP. Typically this is a transformation represented by a learned affined

transformation followed by a fixed nonlinearity.

Would it be advantageous to introduce depth in each of these operations?

Experimental evidence (Graves , 2013; Pascanu , 2014a) strongly suggestset al. et al.
so. The experimental evidence is in agreement with the idea that we need enough

depth in order to perform the required mappings. See also Schmidhuber (1992),

El Hihi and Bengio (1996), or Jaeger (2007a) for earlier work on deep RNNs.

Graves (2013) were the first to show a significant benefit of decomposinget al.
the state of an RNN into multiple layers as in Fig. 10.13 (left). We can think
of the lower layers in the hierarchy depicted in Fig. 10.13a as playing a role in
transforming the raw input into a representation that is more appropriate, at
the higher levels of the hidden state. Pascanu (2014a) go a step furtheret al.
and propose to have a separate MLP (possibly deep) for each of the three blocks

enumerated above, as illustrated in Fig. 10.13b. Considerations of representational
capacity suggest to allocate enough capacity in each of these three steps, but doing
so by adding depth may hurt learning by making optimization difficult. In general,

it is easier to optimize shallower architectures, and adding the extra depth of
Fig. 10.13b makes the shortest path from a variable in time step t to a variable

in time step t + 1 become longer. For example, if an MLP with a single hidden
layer is used for the state-to-state transition, we have doubled the length of the

shortest path between variables in any two different time steps, compared with the
ordinary RNN of Fig. 10.3. However, as argued by Pascanu (2014a), thiset al.

400

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

h

y

x

z

(a) (b) (c)

x

h

y

x

h

y

Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu
et al. (a), 2014a). The hidden recurrent state can be broken down into groups organized
hierarchically. Deeper computation (e.g., an MLP) can be introduced in the input-to-(b)
hidden, hidden-to-hidden and hidden-to-output parts. This may lengthen the shortest
path linking different time steps. The path-lengthening effect can be mitigated by(c)
introducing skip connections.

401

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

can be mitigated by introducing skip connections in the hidden-to-hidden path, as
illustrated in Fig. 10.13c.

10.6 Recursive Neural Networks

x(1)x(1) x(2)x(2) x(3)x(3)

V V V

yy

LL

x(4)x(4)

V

oo

U W U W

U
W

Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x(1) ,x(2), . . . ,x ()t can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U, V , W). The figure illustrates a supervised learning case in which
some target is provided which is associated with the whole sequence.y

Recursive neural networks1 represent yet another generalization of recurrent
networks, with a different kind of computational graph, which is structured as a
deep tree, rather than the chain-like structure of RNNs. The typical computational
graph for a recursive network is illustrated in Fig. 10.14. Recursive neural networks

1We suggest to not abbreviate “recursive neural network” as “RNN” to avoid confusion with
“recurrent neural network.”

402

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

were introduced by Pollack (1990) and their potential use for learning to reason
was described by by Bottou (2011). Recursive networks have been successfully
applied to processing data structures as input to neural nets (Frasconi et al.,
1997, 1998), in natural language processing (Socher , 2011a,c, 2013a) as wellet al.
as in computer vision (Socher et al., 2011b).

One clear advantage of recursive nets over recurrent nets is that for a sequence
of the same length τ , the depth (measured as the number of compositions of
nonlinear operations) can be drastically reduced from τ to O(log τ), which might
help deal with long-term dependencies. An open question is how to best structure

the tree. One option is to have a tree structure which does not depend on the data,
such as a balanced binary tree. In some application domains, external methods
can suggest the appropriate tree structure. For example, when processing natural
language sentences, the tree structure for the recursive network can be fixed to
the structure of the parse tree of the sentence provided by a natural language
parser (Socher , 2011a, 2013a). Ideally, one would like the learner itself toet al.
discover and infer the tree structure that is appropriate for any given input, as
suggested by Bottou (2011).

Many variants of the recursive net idea are possible. For example, Frasconi

et al. (1997) and Frasconi (1998) associate the data with a tree structure,et al.
and associate the inputs and targets with individual nodes of the tree. The

computation performed by each node does not have to be the traditional artificial
neuron computation (affine transformation of all inputs followed by a monotone
nonlinearity). For example, Socher (2013a) propose using tensor operationset al.
and bilinear forms, which have previously been found useful to model relationships
between concepts (Weston , 2010; Bordes , 2012) when the concepts areet al. et al.
represented by continuous vectors (embeddings).

10.7 The Challenge of Long-Term Dependencies

The mathematical challenge of learning long-term dependencies in recurrent net-

works was introduced in Sec. 8.2.5. The basic problem is that gradients propagated
over many stages tend to either vanish (most of the time) or explode (rarely, but
with much damage to the optimization). Even if we assume that the parameters are

such that the recurrent network is stable (can store memories, with gradients not
exploding), the difficulty with long-term dependencies arises from the exponentially
smaller weights given to long-term interactions (involving the multiplication of
many Jacobians) compared to short-term ones. Many other sources provide a

deeper treatment (Hochreiter, 1991; Doya, 1993; Bengio , 1994; Pascanuet al. et al.,

403

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

−60 −40 −20 0 20 40 60
Input coordinate

−4
−3
−2
−1

0
1
2
3
4

P
ro

je
ct

io
n

of
 o

ut
pu

t

Repeated function composition

0
1
2
3
4
5

Figure 10.15: When composing many nonlinear functions (like the linear-tanh layer shown
here), the result is highly nonlinear, typically with most of the values associated with a tiny
derivative, some values with a large derivative, and many alternations between increasing
and decreasing. In this plot, we plot a linear projection of a 100-dimensional hidden state
down to a single dimension, plotted on the y-axis. The x -axis is the coordinate of the
initial state along a random direction in the 100-dimensional space. We can thus view this
plot as a linear cross-section of a high-dimensional function. The plots show the function
after each time step, or equivalently, after each number of times the transition function
has been composed.

2013a) . In this section, we describe the problem in more detail. The remaining
sections describe approaches to overcoming the problem.

Recurrent networks involve the composition of the same function multiple
times, once per time step. These compositions can result in extremely nonlinear

behavior, as illustrated in Fig. 10.15.

In particular, the function composition employed by recurrent neural networks
somewhat resembles matrix multiplication. We can think of the recurrence relation

h()t = Wh(1)t− (10.21)

as a very simple recurrent neural network lacking a nonlinear activation function,
and lacking inputs x . As described in Sec. 8.2.5, this recurrence relation essentially

describes the power method. It may be simplified to

h()t =

W t

 h(0) , (10.22)

and if admits an eigendecompositionW

W Q Q= Λ  , (10.23)

404

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

the recurrence may be simplified further to

h ()t = QΛtQh(0) . (10.24)

The eigenvalues are raised to the power of t causing eigenvalues with magnitude
less than one to decay to zero and eigenvalues with magnitude greater than one to
explode. Any component of h(0) that is not aligned with the largest eigenvector
will eventually be discarded.

This problem is particular to recurrent networks. In the scalar case, imagine
multiplying a weight w by itself many times. The product wt will either vanish or
explode depending on the magnitude of w. However, if we make a non-recurrent
network that has a different weight w ()t at each time step, the situation is different.

If the initial state is given by , then the state at time1 t is given by

tw
()t . Suppose

that the w()t values are generated randomly, independently from one another, with
zero mean and variance v . The variance of the product isO(vn). To obtain some
desired variance v∗ we may choose the individual weights with variance v = n

√
v∗.

Very deep feedforward networks with carefully chosen scaling can thus avoid the
vanishing and exploding gradient problem, as argued by Sussillo (2014).

The vanishing and exploding gradient problem for RNNs was independently

discovered by separate researchers (Hochreiter, 1991; Bengio , 1993, 1994).et al.
One may hope that the problem can be avoided simply by staying in a region of

parameter space where the gradients do not vanish or explode. Unfortunately, in
order to store memories in a way that is robust to small perturbations, the RNN

must enter a region of parameter space where gradients vanish (Bengio , 1993,et al.
1994). Specifically, whenever the model is able to represent long term dependencies,
the gradient of a long term interaction has exponentially smaller magnitude than
the gradient of a short term interaction. It does not mean that it is impossible
to learn, but that it might take a very long time to learn long-term dependencies,
because the signal about these dependencies will tend to be hidden by the smallest
fluctuations arising from short-term dependencies. In practice, the experiments
in Bengio (1994) show that as we increase the span of the dependencies thatet al.
need to be captured, gradient-based optimization becomes increasingly difficult,
with the probability of successful training of a traditional RNN via SGD rapidly
reaching 0 for sequences of only length 10 or 20.

For a deeper treatment of the dynamical systems view of recurrent networks,
see Doya (1993), Bengio (1994) and Siegelmann and Sontag (1995), with aet al.
review in Pascanu (2013a). The remaining sections of this chapter discusset al.
various approaches that have been proposed to reduce the difficulty of learning
long-term dependencies (in some cases allowing an RNN to learn dependencies

405

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

across hundreds of steps), but the problem of learning long-term dependencies
remains one of the main challenges in deep learning.

10.8 Echo State Networks

Consider the effect of multiplying a state vector h by the recurrent weight matrix
W . The updated stateW h may have larger or smaller norm than the previous
state h. When a linear map W  always shrinks h as measured by the L2 norm,

then we say that the map is contractive.

Echo state networks are models whose weights are chosen to make the dynamics

of forward propagation barely contractive.

The recurrent weights and input weights of a recurrent network are those
that define the state representation captured by the model. As described in
Eq. 10.4, these parameters determine how the state h()t at time t captures
and summarizes information from the previous inputs x(1),x(2), . . . ,x()t . Since
learning the recurrent and input weights is difficult, one option that has been
proposed (Jaeger, 2003; Maass , 2002; Jaeger and Haas, 2004; Jaeger, 2007b)et al.
is to set the recurrent weights such that the recurrent hidden units do a good job of
capturing the history of past inputs, and only learn the output weights . This is

the idea that was independently proposed for echo state networks or ESNs (Jaeger
and Haas, 2004; Jaeger, 2007b) and (Maass , 2002).liquid state machines et al.
The latter is similar, except that it uses spiking neurons (with binary outputs)
instead of the continuous-valued hidden units used for ESNs. Both ESNs and liquid

state machines are termed reservoir computing (Lukoševičius and Jaeger, 2009) to
denote the fact that the hidden units form of reservoir of temporal features which

may capture different aspects of the history of inputs.

One way to think about these reservoir computing recurrent networks is that
they are similar to kernel machines: they map an arbitrary length sequence (the
history of inputs up to time t) into a fixed-length vector (the recurrent state h()t),

on which a linear predictor (typically a linear regression) can be applied to solve

the problem of interest. The training criterion may then be easily designed to be
convex as a function of the output weights. For example, if the output consists
of linear regression from the hidden units to the output targets, and the training
criterion is mean squared error, then it is convex and may be solved reliably with
simple learning algorithms (Jaeger, 2003).

The important question is therefore: how do we set the input and recurrent
weights so that a rich set of histories can be represented in the recurrent neural

406

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

network state? The answer proposed in the reservoir computing literature is to
make the dynamical system associated with the recurrent net nearly be on the
edge of stability.

The original idea was to make eigenvalues of the Jacobian of the state-to-
state transition function be close to . As explained in Sec. 8.2.5, an important1
characteristic of a recurrent network is the eigenvalue spectrum of the Jacobians

J()t = ∂s()t

∂s(1)t− . Of particular importance is the spectral radius of J()t , defined to be
the maximum of the absolute values of its eigenvalues.

To understand the effect of the spectral radius, consider the simple case of

back-propagation with a the Jacobian matrix J that does not change with t . This
case happens, for example, when the network is purely linear. Suppose that J has

an eigenvector v with corresponding eigenvalue λ. Consider what happens as we
propagate a gradient vector backwards through time. If we begin with a gradient
vector g , then after one step of back-propagation, we will have Jg, and after n
steps we will have Jng . Now consider what happens if we instead back-propagate

a perturbed version of g. If we begin with g+ δv, then after one step, we will
have J (g + δv). After n steps, we will have Jn (g+ δv). From this we can see

that back-propagation starting from g and back-propagation starting from g+ δv
diverge by δJ nv after n steps of back-propagation. If v is chosen to be a unit

eigenvector of J with eigenvalue λ , then multiplication by the Jacobian simply
scales the difference at each step. The two executions of back-propagation are
separated by a distance of δ|λ|n. When v corresponds to the largest value of | |λ ,
this perturbation achieves the widest possible separation of an initial perturbation
of size .δ

When | |λ > 1, the deviation size δ|λ| n grows exponentially large. When | |λ < 1,

the deviation size becomes exponentially small.

Of course, this example assumed that the Jacobian was the same at every
time step, corresponding to a recurrent network with no nonlinearity. When a
nonlinearity is present, the derivative of the nonlinearity will approach zero on
many time steps, and help to prevent the explosion resulting from a large spectral
radius. Indeed, the most recent work on echo state networks advocates using a
spectral radius much larger than unity (Yildiz , 2012; Jaeger, 2012).et al.

Everything we have said about back-propagation via repeated matrix multipli-

cation applies equally to forward propagation in a network with no nonlinearity,
where the state h (+1)t = h()t W .

When the spectral radius is less than one, the mapping from h()t to h(+1)t

is contractive, so a small change becomes smaller after each time step. This
necessarily makes the network forget information about the past when we use a

407

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

finite level of precision (such as 32 bit integers) to store the state vector.

The Jacobian matrix tells us how a small change of h()t propagates one step
forward, or equivalently, how the gradient on h(+1)t propagates one step backward,
during back-propagation. Note that neither W nor J need to be symmetric (al-
though they are square and real), so they can have complex-valued eigenvalues and
eigenvectors, with imaginary components corresponding to potentially oscillatory
behavior (if the same Jacobian was applied iteratively). Even though h()t or a
small variation of h()t of interest in back-propagation are real-valued, they can
be expressed in such a complex-valued basis. What matters is what happens to

the magnitude (complex absolute value) of these possibly complex-valued basis
coefficients, when we multiply by the matrix by the vector. An eigenvalue with
magnitude greater than one corresponds to magnification (exponential growth, if
applied iteratively) or shrinking (exponential decay, if applied iteratively).

With a nonlinear map, the Jacobian is free to change at each step. The
dynamics therefore become more complicated. However, it remains true that a
small initial variation can turn into a large variation after several steps. One
difference between the purely linear case and the nonlinear case is that the use of
a squashing nonlinearity such as tanh can cause the recurrent dynamics to become

bounded. Note that it is possible for back-propagation to retain unbounded
dynamics even when forward propagation has bounded dynamics, for example,

when a sequence of tanh units are all in the middle of their linear regime and are
connected by weight matrices with spectral radius greater than . However, it is1
rare for all of the units to simultaneously lie at their linear activation point.tanh

The strategy of echo state networks is simply to fix the weights to have some
spectral radius such as , where information is carried forward through time but3

does not explode due to the stabilizing effect of saturating nonlinearities like tanh.

More recently, it has been shown that the techniques used to set the weights
in ESNs could be used to initialize the weights in a fully trainable recurrent net-
work (with the hidden-to-hidden recurrent weights trained using back-propagation

through time), helping to learn long-term dependencies (Sutskever, 2012; Sutskever
et al., 2013). In this setting, an initial spectral radius of 1.2 performs well, combined

with the sparse initialization scheme described in Sec. 8.4.

10.9 Skip Connections through Time

One way to deal with long-term dependencies is to add direct connections from
variables in the distant path to variables in the present. The idea of using such

408

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

skip connections dates back to Lin (1996) and follows from the idea ofet al.
incorporating delays in feedforward neural networks (Lang and Hinton, 1988). In
an ordinary recurrent network, a recurrent connection goes from a unit at time t
to a unit at time t+ 1. It is possible to construct recurrent networks with longer
delays (Bengio, 1991).

As we have seen in Sec. 8.2.5, gradients may vanish or explode exponentially
with respect to the number of time steps . Lin (1996) introducedet al.
recurrent connections with a time-delay of d to mitigate this problem. Gradients
now diminish exponentially as a function of tau

d
rather than τ . Since there are

both delayed and single step connections, gradients may still explode exponentially
in τ . This allows the learning algorithm to capture longer dependencies although
not all long-term dependencies may be represented well in this way.

10.10 Leaky Units and a Spectrum of Different Time
Scales

Another way to obtain paths on which the product of derivatives is close to one is to
have units with linear self-connections and a weight near one on these connections.

When we accumulate a running average µ()t of some value v()t by applying the
update µ()t ← αµ (1)t− + (1 − α)v()t the α parameter is an example of a linear self-

connection from µ(1)t− to µ()t . When α is near one, the running average remembers
information about the past for a long time, and when α is near zero, information
about the past is rapidly discarded. Hidden units with linear self-connections can

behave similarly to such running averages. Such hidden units are called leaky units.

Skip connections through d time steps are a way of ensuring that a unit can
always learn to be influenced by a value from d time steps earlier. The use of a

linear self-connection with a weight near one is a different way of ensuring that the
unit can access values from the past. The linear self-connection approach allows

this effect to be adapted more smoothly and flexibly by adjusting the real-valued
α rather than by adjusting the integer-valued skip length.

These ideas were proposed by Mozer (1992) and by El Hihi and Bengio (1996).
Leaky units were also found to be useful in the context of echo state networks
(Jaeger , 2007).et al.

There are two basic strategies for setting the time constants used by leaky
units. One strategy is to manually fix them to values that remain constant, for
example by sampling their values from some distribution once at initialization time.

Another strategy is to make the time constants free parameters and learn them.

409

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Having such leaky units at different time scales appears to help with long-term
dependencies (Mozer, 1992; Pascanu , 2013a).et al.

10.11 The Long Short-Term Memory and Other Gated
RNNs

As of this writing, the most effective sequence models used in practical applications
are called gated RNNs long short-term memory. These include the and networks
based on the gated recurrent unit.

Like leaky units, gated RNNs are based on the idea of creating paths through
time that have derivatives that neither vanish nor explode. Leaky units did

this with connection weights that were either manually chosen constants or were
parameters. Gated RNNs generalize this to connection weights that may change
at each time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the

old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to

clear the state, we want the neural network to learn to decide when to do it. This
is what gated RNNs do.

10.11.1 LSTM

The clever idea of introducing self-loops to produce paths where the gradient can
flow for long durations is a core contribution of the initial long short-term memory

(LSTM) model (Hochreiter and Schmidhuber, 1997). A crucial addition has been
to make the weight on this self-loop conditioned on the context, rather than fixed
(Gers et al., 2000). By making the weight of this self-loop gated (controlled by

another hidden unit), the time scale of integration can be changed dynamically. In
this case, we mean that even for an LSTM with fixed parameters, the time scale of
integration can change based on the input sequence, because the time constants are
output by the model itself. The LSTM has been found extremely successful in many

applications, such as unconstrained handwriting recognition (Graves , 2009),et al.
speech recognition (Graves , 2013; Graves and Jaitly, 2014), handwritinget al.
generation (Graves, 2013), machine translation (Sutskever et al., 2014a), image

410

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of 1 time unit.

411

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

captioning (Kiros , 2014b; Vinyals , 2014b; Xu , 2015b) andet al. et al. et al.
parsing (Vinyals , 2014a).et al.

The LSTM block diagram is illustrated in Fig. 10.16. The corresponding
forward propagation equations are given below, in the case of a shallow recurrent
network architecture. Deeper architectures have also been successfully used (Graves
et al., 2013; Pascanu , 2014a). Instead of a unit that simply applies an element-et al.
wise nonlinearity to the affine transformation of inputs and recurrent units, LSTM
recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop),
in addition to the outer recurrence of the RNN. Each cell has the same inputs

and outputs as an ordinary recurrent network, but has more parameters and a
system of gating units that controls the flow of information. The most important

component is the state unit s
()t
i that has a linear self-loop similar to the leaky

units described in the previous section. However, here, the self-loop weight (or the

associated time constant) is controlled by a forget gate unit f
()t
i (for time step t

and cell), that sets this weight to a value between 0 and 1 via a sigmoid unit:i

f
()t
i = σ


 bfi +



j

Ufijx
()t
j +



j

W f
ijh

()t
j


 , (10.25)

where x()t is the current input vector andh()t is the current hidden layer vector,

containing the outputs of all the LSTM cells, and bf ,Uf ,W f are respectively
biases, input weights and recurrent weights for the forget gates. The LSTM cell
internal state is thus updated as follows, but with a conditional self-loop weight

f
()t
i :

s
()t
i

= f
()t
i
s
(1)t−
i

+ g
()t
i
σ


b i+



j

U ijx
()t
j

+


j

Wijh
(1)t−
j


 , (10.26)

where b, U andW respectively denote the biases, input weights and recurrent

weights into the LSTM cell. The unitexternal input gate g
()t
i is computed similarly

to the forget gate (with a sigmoid unit to obtain a gating value between 0 and 1),
but with its own parameters:

g
()t
i = σ


bgi +



j

U
g
ijx
()t
j +



j

W
g
ijh
(1)t−
j


 . (10.27)

The output h
()t

i of the LSTM cell can also be shut off, via the output gate q
()t

i ,

412

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

which also uses a sigmoid unit for gating:

h
()t

i = tanh

s
()t

i


q
()t

i

q
()t
i = σ


boi +



j

U oij x
()t
j +



j

W o
ij h

(1)t−
j


 (10.28)

which has parameters bo, U o, W o for its biases, input weights and recurrent

weights, respectively. Among the variants, one can choose to use the cell state s
()t
i

as an extra input (with its weight) into the three gates of the i -th unit, as shown
in Fig. 10.16. This would require three additional parameters.

LSTM networks have been shown to learn long-term dependencies more easily
than the simple recurrent architectures, first on artificial data sets designed for
testing the ability to learn long-term dependencies (Bengio , 1994; Hochreiteret al.
and Schmidhuber, 1997; Hochreiter , 2000), then on challenging sequenceet al.
processing tasks where state-of-the-art performance was obtained (Graves, 2012;
Graves , 2013; Sutskever , 2014a). Variants and alternatives to the LSTMet al. et al.

have been studied and used and are discussed next.

10.11.2 Other Gated RNNs

Which pieces of the LSTM architecture are actually necessary? What other
successful architectures could be designed that allow the network to dynamically
control the time scale and forgetting behavior of different units?

Some answers to these questions are given with the recent work on gated
RNNs, whose units are also known as gated recurrent units or GRUs (Cho ,et al.
2014b; Chung , 2014, 2015a; Jozefowicz , 2015b; Chrupala , 2015).et al. et al. et al.
The main difference with the LSTM is that a single gating unit simultaneously

controls the forgetting factor and the decision to update the state unit. The update
equations are the following:

h
(+1)t
i = u

()t
i h

()t
i + (1 −u()ti)σ


bi +



j

Uij x
()t
j +



j

W ijr
()t
j h

()t
j


 , (10.29)

where u stands for “update” gate and r for “reset” gate. Their value is defined as
usual:

u
()t
i = σ


bui +



j

U uijx
()t
j +



j

W u
ij h

()t
j


 (10.30)

413

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

and

r
()t
i = σ


bri +



j

U rijx
()t
j +



j

Wr
ij h

()t
j


 . (10.31)

The reset and updates gates can individually “ignore” parts of the state vector.
The update gates act like conditional leaky integrators that can linearly gate any
dimension, thus choosing to copy it (at one extreme of the sigmoid) or completely
ignore it (at the other extreme) by replacing it by the new “target state” value
(towards which the leaky integrator wants to converge). The reset gates control
which parts of the state get used to compute the next target state, introducing an
additional nonlinear effect in the relationship between past state and future state.

Many more variants around this theme can be designed. For example the
reset gate (or forget gate) output could be shared across multiple hidden units.
Alternately, the product of a global gate (covering a whole group of units, such as
an entire layer) and a local gate (per unit) could be used to combine global control
and local control. However, several investigations over architectural variations
of the LSTM and GRU found no variant that would clearly beat both of these
across a wide range of tasks (Greff et al., 2015; Jozefowicz et al., 2015a). Greff
et al. (2015) found that a crucial ingredient is the forget gate, while Jozefowicz
et al. (2015a) found that adding a bias of 1 to the LSTM forget gate, a practice
advocated by Gers (2000), makes the LSTM as strong as the best of theet al.

explored architectural variants.

10.12 Optimization for Long-Term Dependencies

Sec. 8.2.5 and Sec. 10.7 have described the vanishing and exploding gradient
problems that occur when optimizing RNNs over many time steps.

An interesting idea proposed byMartens and Sutskever (2011) is that second
derivatives may vanish at the same time that first derivatives vanish. Second-order

optimization algorithms may roughly be understood as dividing the first derivative
by the second derivative (in higher dimension, multiplying the gradient by the
inverse Hessian). If the second derivative shrinks at a similar rate to the first
derivative, then the ratio of first and second derivatives may remain relatively
constant. Unfortunately, second-order methods have many drawbacks, including
high computational cost, the need for a large minibatch, and a tendency to be
attracted to saddle points. Martens and Sutskever (2011) found promising results
using second-order methods. Later, Sutskever (2013) found that simpleret al.

methods such as Nesterov momentum with careful initialization could achieve

414

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Task network,

controlling the memory

Memory cells

Writing

mechanism

Reading

mechanism

Figure 10.17: A schematic of an example of a network with an explicit memory, capturing
some of the key design elements of the neural Turing machine. In this diagram we
distinguish the “representation” part of the model (the “task network,” here a recurrent
net in the bottom) from the “memory” part of the model (the set of cells), which can
store facts. The task network learns to “control” the memory, deciding where to read from
and where to write to within the memory (through the reading and writing mechanisms,
indicated by bold arrows pointing at the reading and writing addresses).

415

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

similar results. See Sutskever (2012) for more detail. Both of these approaches
have largely been replaced by simply using SGD (even without momentum) applied
to LSTMs. This is part of a continuing theme in machine learning that it is often
much easier to design a model that is easy to optimize than it is to design a more
powerful optimization algorithm.

10.12.1 Clipping Gradients

As discussed in Sec. 8.2.4, strongly nonlinear functions such as those computed by

a recurrent net over many time steps tend to have derivatives that can be either
very large or very small in magnitude. This is illustrated in Fig. 8.3 and Fig. 10.18,

in which we see that the objective function (as a function of the parameters) has a
“landscape” in which one finds “cliffs”: wide and rather flat regions separated by

tiny regions where the objective function changes quickly, forming a kind of cliff.

The difficulty that arises is that when the parameter gradient is very large, a
gradient descent parameter update could throw the parameters very far, into a
region where the objective function is larger, undoing much of the work that had

been done to reach the current solution. The gradient tells us the direction that
corresponds to the steepest descent within an infinitesimal region surrounding the

current parameters. Outside of this infinitesimal region, the cost function may
begin to curve back upwards. The update must be chosen to be small enough to
avoid traversing too much upward curvature. We typically use learning rates that
decay slowly enough that consecutive steps have approximately the same learning
rate. A step size that is appropriate for a relatively linear part of the landscape is
often inappropriate and causes uphill motion if we enter a more curved part of the
landscape on the next step.

416

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

w

b

J
w
;b

(
)

Without clipping

w

b

J
w
;b

(
)

With clipping

Figure 10.18: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b . Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left) Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right) Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu (2013a).et al.

A simple type of solution has been in use by practitioners for many years:
clipping the gradient. There are different instances of this idea (Mikolov, 2012;

Pascanu , 2013a). One option is to clip the parameter gradient from aet al.
minibatch (Mikolov, 2012) just before the parameter update. Anotherelement-wise

is to clip the norm || ||g of the gradient g (Pascanu , 2013a) just before theet al.
parameter update:

if || ||g > v

g ← gv

|| ||g
(10.32)

where v is the norm threshold and g is used to update parameters. Because the
gradient of all the parameters (including different groups of parameters, such as
weights and biases) is renormalized jointly with a single scaling factor, the latter
method has the advantage that it guarantees that each step is still in the gradient
direction, but experiments suggest that both forms work similarly. Although

417

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

the parameter update has the same direction as the true gradient, with gradient
norm clipping, the parameter update vector norm is now bounded. This bounded
gradient avoids performing a detrimental step when the gradient explodes. In
fact, even simply taking a random step when the gradient magnitude is above
a threshold tends to work almost as well. If the explosion is so severe that the
gradient is numerically Inf or Nan (considered infinite or not-a-number), then
a random step of size v can be taken and will typically move away from the
numerically unstable configuration. Clipping the gradient norm per-minibatch will
not change the direction of the gradient for an individual minibatch. However,

taking the average of the norm-clipped gradient from many minibatches is not
equivalent to clipping the norm of the true gradient (the gradient formed from

using all examples). Examples that have large gradient norm, as well as examples

that appear in the same minibatch as such examples, will have their contribution
to the final direction diminished. This stands in contrast to traditional minibatch
gradient descent, where the true gradient direction is equal to the average over all
minibatch gradients. Put another way, traditional stochastic gradient descent uses

an unbiased estimate of the gradient, while gradient descent with norm clipping
introduces a heuristic bias that we know empirically to be useful. With element-
wise clipping, the direction of the update is not aligned with the true gradient
or the minibatch gradient, but it is still a descent direction. It has also been

proposed (Graves, 2013) to clip the back-propagated gradient (with respect to
hidden units) but no comparison has been published between these variants; we
conjecture that all these methods behave similarly.

10.13 Regularizing to Encourage Information Flow

Gradient clipping helps to deal with exploding gradients, but it does not help with
vanishing gradients. To address vanishing gradients and better capture long-term

dependencies, we discussed the idea of creating paths in the computational graph of
the unfolded recurrent architecture along which the product of gradients associated
with arcs is near 1. One approach to achieve this is with LSTMs and other self-loops

and gating mechanisms, described above in Sec. 10.11. Another idea is to regularize
or constrain the parameters so as to encourage “information flow.” In particular,
we would like the gradient vector ∇h()t L being back-propagated to maintain its
magnitude, even if the loss function only penalizes the output at the end of the

sequence. Formally, we want

(∇h ()t L)
∂h()t

∂h(1)t− (10.33)

418

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

to be as large as
∇h()t L. (10.34)

With this objective, Pascanu (2013a) propose the following regularizer:et al.

Ω =


t




| ∇(h()t L) ∂h()t

∂h(1)t−

 |
||∇

h()t
L| | − 1



2

. (10.35)

Computing the gradient of this regularizer may appear difficult, but Pascanu
et al. (2013a) propose an approximation in which we consider the back-propagated

vectors ∇h()t xL as if they were constants (for the purpose of this regularizer, so
that there is no need to back-propagate through them). The experiments with
this regularizer suggest that, if combined with the norm clipping heuristic (which

handles gradient explosion), the regularizer can considerably increase the span of
the dependencies that an RNN can learn. Because it keeps the RNN dynamics

on the edge of explosive gradients, the gradient clipping is particularly important.
Without gradient clipping, gradient explosion prevents learning from succeeding.

A key weakness of this approach is that it is not as effective as the LSTM for

tasks where data is abundant, such as language modeling.

10.14 Organizing the State at Multiple Time Scales

Another approach to handle long-term dependencies is the idea of organizing

the state of the RNN at multiple time-scales (El Hihi and Bengio, 1996), with
information flowing more easily through long distances at the slower time scales.

This idea differs from the skip connections through time discussed earlier
because it involves actively removing length-one connections and replacing them
with longer connections. Units modified in such a way are forced to operate on a
long time scale. Skip connections through time add edges. Units receiving such
new connections may learn to operate on a long time scale but may also choose to

focus on their other short-term connections.

There are different ways in which a group of recurrent units can be forced to
operate at different time scales. One option is to make the recurrent units leaky,
but to have different groups of units associated with different fixed time scales.
This was the proposal in Mozer (1992) and has been successfully used in Pascanu
et al. (2013a). Another option is to have explicit and discrete updates taking place
at different times, with a different frequency for different groups of units. This is
the approach of El Hihi and Bengio (1996) and Koutnik (2014). It workedet al.
well on a number of benchmark datasets.

419

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.15 Explicit Memory

Intelligence requires knowledge and acquiring knowledge can be done via learning,
which has motivated the development of large-scale deep architectures. However,
there are different kinds of knowledge. Some knowledge can be implicit, sub-
conscious, and difficult to verbalize—such as how to walk, or how a dog looks
different from a cat. Other knowledge can be explicit, declarative, and relatively
straightforward to put into words—every day commonsense knowledge, like “a cat
is a kind of animal,” or very specific facts that you need to know to accomplish

your current goals, like “the meeting with the sales team is at 3:00 PM in room
141.”

Neural networks excel at storing implicit knowledge. However, they struggle
to memorize facts. Stochastic gradient descent requires many presentations of
the same input before it can be stored in a neural network parameters, and even
then, that input will not be stored especially precisely. Graves (2014b)et al.
hypothesized that this is because neural networks lack the equivalent of the working
memory system that allows human beings to explicitly hold and manipulate pieces
of information that are relevant to achieving some goal. Such explicit memory
components would allow our systems not only to rapidly and “intentionally” store
and retrieve specific facts but also to sequentially reason with them.

To resolve this difficulty, Weston (2014) introduced thatet al. memory networks
include a set of memory cells that can be accessed via an addressing mechanism.
Memory networks originally required a supervision signal instructing them how
to use their memory cells. Graves (2014b) introduced theet al. neural Turing
machine, which is able to learn to read from and write arbitrary content to

memory cells without explicit supervision about which actions to undertake,
and allowed end-to-end training without this supervision signal, thanks the use
of a content-based soft attention mechanism (see Bahdanau (2014) andet al.
Sec. 12.4.5.1). This soft addressing mechanism has become standard with other
related architectures emulating algorithmic mechanisms in a way that still allows
gradient-based optimization (Sukhbaatar , 2015; Joulin and Mikolov, 2015;et al.

Kumar , 2015; Vinyals , 2015a; Grefenstette , 2015).et al. et al. et al.

Each memory cell can be thought of as an extension of the memory cells in

LSTMs and GRUs. The difference is that the network outputs an internal state
that chooses which cell to read from or write to, just as memory accesses in a
digital computer read from or write to a specific address.

It is difficult to optimize functions that produce exact, integer addresses. To
alleviate this problem, NTMs actually read to or write from many memory cells

420

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

simultaneously. To read, they take a weighted average of many cells. To write, they
modify multiple cells by different amounts. The coefficients for these operations
are chosen to be focused on a small number of cells, for example, by producing
them via a softmax function. Using these weights with non-zero derivatives allows
the functions controlling access to the memory to be optimized using gradient
descent. The gradient on these coefficients indicates whether each of them should
be increased or decreased, but the gradient will typically be large only for those
memory addresses receiving a large coefficient.

These memory cells are typically augmented to contain a vector, rather than

the single scalar stored by an LSTM or GRU memory cell. There are two reasons
to increase the size of the memory cell. One reason is that we have increased the
cost of accessing a memory cell. We pay the computational cost of producing a
coefficient for many cells, but we expect these coefficients to cluster around a small
number of cells. By reading a vector value, rather than a scalar value, we can
offset some of this cost. Another reason to use vector-valued memory cells is that
they allow for content-based addressing, where the weight used to read to or write
from a cell is a function of that cell. Vector-valued cells allow us to retrieve a
complete vector-valued memory if we are able to produce a pattern that matches
some but not all of its elements. This is analogous to the way that people can
recall the lyrics of a song based on a few words. We can think of a content-based
read instruction as saying, “Retrieve the lyrics of the song that has the chorus ‘We
all live in a yellow submarine.’ ” Content-based addressing is more useful when we

make the objects to be retrieved large—if every letter of the song was stored in a
separate memory cell, we would not be able to find them this way. By comparison,

location-based addressing is not allowed to refer to the content of the memory. We
can think of a location-based read instruction as saying “Retrieve the lyrics of
the song in slot 347.” Location-based addressing can often be a perfectly sensible
mechanism even when the memory cells are small.

If the content of a memory cell is copied (not forgotten) at most time steps, then

the information it contains can be propagated forward in time and the gradients
propagated backward in time without either vanishing or exploding.

The explicit memory approach is illustrated in Fig. 10.17, where we see that
a “task neural network” is coupled with a memory. Although that task neural
network could be feedforward or recurrent, the overall system is a recurrent network.
The task network can choose to read from or write to specific memory addresses.

Explicit memory seems to allow models to learn tasks that ordinary RNNs or LSTM
RNNs cannot learn. One reason for this advantage may be because information and
gradients can be propagated (forward in time or backwards in time, respectively)

421

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

for very long durations.

As an alternative to back-propagation through weighted averages of memory
cells, we can interpret the memory addressing coefficients as probabilities and
stochastically read just one cell (Zaremba and Sutskever, 2015). Optimizing models
that make discrete decisions requires specialized optimization algorithms, described
in Sec. 20.9.1. So far, training these stochastic architectures that make discrete
decisions remains harder than training deterministic algorithms that make soft
decisions.

Whether it is soft (allowing back-propagation) or stochastic and hard, the mech-

anism for choosing an address is in its form identical to the attention mechanism

which had been previously introduced in the context of machine translation (Bah-
danau et al., 2014) and discussed in Sec. 12.4.5.1. The idea of attention mechanisms
for neural networks was introduced even earlier, in the context of handwriting
generation (Graves, 2013), with an attention mechanism that was constrained to
move only forward in time through the sequence. In the case of machine translation
and memory networks, at each step, the focus of attention can move to a completely
different place, compared to the previous step.

Recurrent neural networks provide a way to extend deep learning to sequential

data. They are the last major tool in our deep learning toolbox. Our discussion now
moves to how to choose and use these tools and how to apply them to real-world
tasks.

422

