
Chapter 7

Regularization for Deep Learning

A central problem in machine learning is how to make an algorithm that will
perform well not just on the training data, but also on new inputs. Many strategies
used in machine learning are explicitly designed to reduce the test error, possibly
at the expense of increased training error. These strategies are known collectively

as regularization. As we will see there are a great many forms of regularization
available to the deep learning practitioner. In fact, developing more effective
regularization strategies has been one of the major research efforts in the field.

Chapter 5 introduced the basic concepts of generalization, underfitting, overfit-
ting, bias, variance and regularization. If you are not already familiar with these
notions, please refer to that chapter before continuing with this one.

In this chapter, we describe regularization in more detail, focusing on regular-
ization strategies for deep models or models that may be used as building blocks
to form deep models.

Some sections of this chapter deal with standard concepts in machine learning.
If you are already familiar with these concepts, feel free to skip the relevant

sections. However, most of this chapter is concerned with the extension of these
basic concepts to the particular case of neural networks.

In Sec. 5.2.2, we defined regularization as “any modification we make to a
learning algorithm that is intended to reduce its generalization error but not
its training error.” There are many regularization strategies. Some put extra
constraints on a machine learning model, such as adding restrictions on the
parameter values. Some add extra terms in the objective function that can be
thought of as corresponding to a soft constraint on the parameter values. If chosen
carefully, these extra constraints and penalties can lead to improved performance

228

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

on the test set. Sometimes these constraints and penalties are designed to encode
specific kinds of prior knowledge. Other times, these constraints and penalties
are designed to express a generic preference for a simpler model class in order to
promote generalization. Sometimes penalties and constraints are necessary to make
an underdetermined problem determined. Other forms of regularization, known as
ensemble methods, combine multiple hypotheses that explain the training data.

In the context of deep learning, most regularization strategies are based on
regularizing estimators. Regularization of an estimator works by trading increased
bias for reduced variance. An effective regularizer is one that makes a profitable

trade, reducing variance significantly while not overly increasing the bias. When
we discussed generalization and overfitting in Chapter 5, we focused on three
situations, where the model family being trained either (1) excluded the true
data generating process—corresponding to underfitting and inducing bias, or (2)
matched the true data generating process, or (3) included the generating process
but also many other possible generating processes—the overfitting regime where
variance rather than bias dominates the estimation error. The goal of regularization
is to take a model from the third regime into the second regime.

In practice, an overly complex model family does not necessarily include the
target function or the true data generating process, or even a close approximation
of either. We almost never have access to the true data generating process so

we can never know for sure if the model family being estimated includes the
generating process or not. However, most applications of deep learning algorithms
are to domains where the true data generating process is almost certainly outside
the model family. Deep learning algorithms are typically applied to extremely
complicated domains such as images, audio sequences and text, for which the true
generation process essentially involves simulating the entire universe. To some
extent, we are always trying to fit a square peg (the data generating process) into
a round hole (our model family).

What this means is that controlling the complexity of the model is not a
simple matter of finding the model of the right size, with the right number of
parameters. Instead, we might find—and indeed in practical deep learning scenarios,

we almost always do find—that the best fitting model (in the sense of minimizing
generalization error) is a large model that has been regularized appropriately.

We now review several strategies for how to create such a large, deep, regularized
model.

229

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

7.1 Parameter Norm Penalties

Regularization has been used for decades prior to the advent of deep learning. Linear
models such as linear regression and logistic regression allow simple, straightforward,
and effective regularization strategies.

Many regularization approaches are based on limiting the capacity of models,
such as neural networks, linear regression, or logistic regression, by adding a pa-
rameter norm penalty Ω(θ) to the objective function J . We denote the regularized
objective function by J̃ :

J̃ , J , α(;θ X y) = (;θ X y) + Ω()θ (7.1)

where α ∈ [0,∞) is a hyperparameter that weights the relative contribution of
the norm penalty term, , relative to the standard objective functionΩ J(x; θ).
Setting α to 0 results in no regularization. Larger values of α correspond to more
regularization.

When our training algorithm minimizes the regularized objective function J̃ it
will decrease both the original objective J on the training data and some measure

of the size of the parameters θ (or some subset of the parameters). Different
choices for the parameter norm can result in different solutions being preferred.Ω

In this section, we discuss the effects of the various norms when used as penalties
on the model parameters.

Before delving into the regularization behavior of different norms, we note that
for neural networks, we typically choose to use a parameter norm penalty thatΩ
penalizes only the weights of the affine transformation at each layer and leaves
the biases unregularized. The biases typically require less data to fit accurately
than the weights. Each weight specifies how two variables interact. Fitting the
weight well requires observing both variables in a variety of conditions. Each
bias controls only a single variable. This means that we do not induce too much

variance by leaving the biases unregularized. Also, regularizing the bias parameters
can introduce a significant amount of underfitting. We therefore use the vector w
to indicate all of the weights that should be affected by a norm penalty, while the
vector θ denotes all of the parameters, including both w and the unregularized
parameters.

In the context of neural networks, it is sometimes desirable to use a separate
penalty with a different α coefficient for each layer of the network. Because it can
be expensive to search for the correct value of multiple hyperparameters, it is still
reasonable to use the same weight decay at all layers just to reduce the search
space.

230

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

7.1.1 L
2 Parameter Regularization

We have already seen, in Sec. 5.2.2, one of the simplest and most common kinds
of parameter norm penalty: the L2 parameter norm penalty commonly known as

weight decay. This regularization strategy drives the weights closer to the origin1

by adding a regularization term Ω(θ) = 1
2 w 2

2 to the objective function. In
other academic communities, L2 regularization is also known as ridge regression or
Tikhonov regularization.

We can gain some insight into the behavior of weight decay regularization
by studying the gradient of the regularized objective function. To simplify the
presentation, we assume no bias parameter, so θ is just w. Such a model has the
following total objective function:

J̃ ,(;w X y) =
α

2
ww w X y+ (J ; ,), (7.2)

with the corresponding parameter gradient

∇wJ̃ , α(;w X y) = w + ∇wJ , .(;w X y) (7.3)

To take a single gradient step to update the weights, we perform this update:

w w w← −  α(+ ∇wJ , .(;w X y)) (7.4)

Written another way, the update is:

w w← −(1 α) − ∇ wJ , .(;w X y) (7.5)

We can see that the addition of the weight decay term has modified the learning
rule to multiplicatively shrink the weight vector by a constant factor on each step,
just before performing the usual gradient update. This describes what happens in
a single step. But what happens over the entire course of training?

We will further simplify the analysis by making a quadratic approximation
to the objective function in the neighborhood of the value of the weights that
obtains minimal unregularized training cost, w∗ = arg min

w
J(w). If the objective

function is truly quadratic, as in the case of fitting a linear regression model with

mean squared error, then the approximation is perfect.

Ĵ J() = θ (w∗) +
1

2
(w w− ∗)H w w(− ∗) (7.6)

1More generally, we could regularize the parameters to be near any specific point in space
and, surprisingly, still get a regularization effect, but better results will be obtained for a value
closer to the true one, with zero being a default value that makes sense when we do not know if
the correct value should be positive or negative. Since it is far more common to regularize the
model parameters towards zero, we will focus on this special case in our exposition.

231

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

where H is the Hessian matrix of J with respect tow evaluated at w∗. There is
no first-order term in this quadratic approximation, because w∗ is defined to be a
minimum, where the gradient vanishes. Likewise, because w∗ is the location of a
minimum of , we can conclude that is positive semidefinite.J H

The minimum of Ĵ occurs where its gradient

∇w Ĵ() = (w H w w− ∗) (7.7)

is equal to .0

To study the effect of weight decay, we modify Eq. 7.7 by adding the weight
decay gradient. We can now solve for the minimum of the regularized version of Ĵ.
We use the variable w̃ to represent the location of the minimum.

αw̃ H+ (w̃ w− ∗) = 0

(+)H αI w̃ Hw= ∗

w̃ H I= (+ α)−1Hw ∗. (7.8)

As α approaches 0, the regularized solution w̃ approaches w∗. But what
happens as α grows? Because H is real and symmetric, we can decompose it
into a diagonal matrixΛ and an orthonormal basis of eigenvectors,Q, such that
H Q Q= Λ  . Applying the decomposition to Eq.7.8, we obtain:

w̃ Q Q= (Λ  +)αI −1Q QΛ w∗

=

Q I Q(+Λ α) 

−1
Q QΛ w∗

= (+)Q Λ αI −1ΛQw∗. (7.9)

We see that the effect of weight decay is to rescale w ∗ along the axes defined by
the eigenvectors of H . Specifically, the component of w∗ that is aligned with the

i-th eigenvector of h is rescaled by a factor of λi
λi+α

. (You may wish to review how
this kind of scaling works, first explained in Fig. 2.3).

Along the directions where the eigenvalues of H are relatively large, for example,
where λi  α, the effect of regularization is relatively small. However, components
with λi  αwill be shrunk to have nearly zero magnitude. This effect is illustrated
in Fig. 7.1.

Only directions along which the parameters contribute significantly to reducing
the objective function are preserved relatively intact. In directions that do not
contribute to reducing the objective function, a small eigenvalue of the Hessian
tells us that movement in this direction will not significantly increase the gradient.

232

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

w1

w
2

w∗

w̃

Figure 7.1: An illustration of the effect of L2 (or weight decay) regularization on the value
of the optimal w. The solid ellipses represent contours of equal value of the unregularized
objective. The dotted circles represent contours of equal value of the L2 regularizer. At
the point w̃, these competing objectives reach an equilibrium. In the first dimension, the
eigenvalue of the Hessian of J is small. The objective function does not increase much
when moving horizontally away from w∗ . Because the objective function does not express
a strong preference along this direction, the regularizer has a strong effect on this axis.
The regularizer pulls w1 close to zero. In the second dimension, the objective function
is very sensitive to movements away from w∗ . The corresponding eigenvalue is large,
indicating high curvature. As a result, weight decay affects the position of w 2 relatively
little.

233

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Components of the weight vector corresponding to such unimportant directions
are decayed away through the use of the regularization throughout training.

So far we have discussed weight decay in terms of its effect on the optimization
of an abstract, general, quadratic cost function. How do these effects relate to
machine learning in particular? We can find out by studying linear regression, a
model for which the true cost function is quadratic and therefore amenable to the
same kind of analysis we have used so far. Applying the analysis again, we will
be able to obtain a special case of the same results, but with the solution now
phrased in terms of the training data. For linear regression, the cost function is

the sum of squared errors:

()Xw y− ()Xw y− . (7.10)

When we add L2 regularization, the objective function changes to

()Xw y− () +Xw y− 1

2
αw w. (7.11)

This changes the normal equations for the solution from

w X= (X)−1X y (7.12)

to

w X= (X I+ α)−1X y. (7.13)

The matrix XX in Eq. 7.12 is proportional to the covariance matrix 1
mX

X.
Using L2 regularization replaces this matrix with XX −1+ αI in Eq. 7.13. The
new matrix is the same as the original one, but with the addition of α to the
diagonal. The diagonal entries of this matrix correspond to the variance of each
input feature. We can see that L2 regularization causes the learning algorithm
to “perceive” the input X as having higher variance, which makes it shrink the

weights on features whose covariance with the output target is low compared to
this added variance.

7.1.2 L
1 Regularization

While L2 weight decay is the most common form of weight decay, there are other
ways to penalize the size of the model parameters. Another option is to use L1

regularization.

Formally, L1 regularization on the model parameter is defined as:w

Ω() = θ || ||w 1 =


i

|wi |, (7.14)

234

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

that is, as the sum of absolute values of the individual parameters.2 We will
now discuss the effect of L1 regularization on the simple linear regression model,
with no bias parameter, that we studied in our analysis of L 2 regularization. In
particular, we are interested in delineating the differences between L1 and L2 forms
of regularization. As with L2 weight decay, L1 weight decay controls the strength
of the regularization by scaling the penalty using a positive hyperparameterΩ α.
Thus, the regularized objective function J̃ ,(;w X y) is given by

J̃ , α(;w X y) = || ||w 1 + (;)J w X y, , (7.15)

with the corresponding gradient (actually, sub-gradient):

∇wJ̃ , α(;w X y) = sign() +w ∇wJ ,(X y w;) (7.16)

where is simply the sign of applied element-wise.sign()w w

By inspecting Eqn. 7.16, we can see immediately that the effect of L1 regu-
larization is quite different from that of L2 regularization. Specifically, we can
see that the regularization contribution to the gradient no longer scales linearly
with each wi ; instead it is a constant factor with a sign equal to sign (w i). One

consequence of this form of the gradient is that we will not necessarily see clean
algebraic solutions to quadratic approximations of J(X y, ; w) as we did for L2

regularization.

Our simple linear model has a quadratic cost function that we can represent
via its Taylor series. Alternately, we could imagine that this is a truncated Taylor
series approximating the cost function of a more sophisticated model. The gradient

in this setting is given by

∇w Ĵ() = (w H w w− ∗), (7.17)

where, again, is the Hessian matrix of with respect to evaluated atH J w w ∗.

Because the L1 penalty does not admit clean algebraic expressions in the case
of a fully general Hessian, we will also make the further simplifying assumption
that the Hessian is diagonal, H = diag([H1 1, , . . . ,Hn,n]), where each Hi,i > 0.
This assumption holds if the data for the linear regression problem has been
preprocessed to remove all correlation between the input features, which may be
accomplished using PCA.

2As with L2 regularization, we could regularize the parameters towards a value that is not

zero, but instead towards some parameter value w()o . In that case the L1 regularization would
introduce the term Ω() = θ || −w w()o ||1 =


i |wi −w

()o
i |.

235

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Our quadratic approximation of the L1 regularized objective function decom-
poses into a sum over the parameters:

Ĵ , J(;w X y) = (w
∗
;) +X y,



i


1

2
Hi,i(wi−w ∗

i)
2+ α|w i|


.

The problem of minimizing this approximate cost function has an analytical solution
(for each dimension), with the following form:i

wi= sign(w∗
i) max


|w∗
i | − α

Hi,i
,0


.

Consider the situation where w∗
i > i0 for all . There are two possible outcomes:

1. w∗
i ≤ α

Hi,i
. Here the optimal value of wi under the regularized objective is

simply wi = 0. This occurs because the contribution of J(w;X y,) to the
regularized objective J̃ (w ;X y,) is overwhelmed—in direction i—by the L1

regularization which pushes the value of wi to zero.

2. w∗
i >

α
Hi,i

, here the regularization does not move the optimal value of wi to

zero but instead it just shifts it in that direction by a distance equal to α
Hi,i

.

A similar process happens when w∗
i < 0, but with the L1 penalty making wi less

negative by α
Hi,i

, or 0.

In comparison to L2 regularization,L1 regularization results in a solution that

is more sparse. Sparsity in this context refers to the fact that some parameters
have an optimal value of zero. The sparsity of L1 regularization is a qualitatively

different behavior than arises with L2 regularization. Eq. 7.9 gave the solution w̃
for L2 regularization. If we revisit that equation using the assumption of a diagonal
Hessian H that we introduced for our analysis ofL1 regularization, we find that

w̃i = Hi,i

Hi,i+α
w∗i . If w

∗
i was nonzero, then w̃ i remains nonzero. This demonstrates

that L2 regularization does not cause the parameters to become sparse, while L1

regularization may do so for large enough .α

The sparsity property induced by L1 regularization has been used extensively
as a feature selection mechanism. Feature selection simplifies a machine learning

problem by choosing which subset of the available features should be used. In
particular, the well known LASSO (Tibshirani, 1995) (least absolute shrinkage and
selection operator) model integrates an L1 penalty with a linear model and a least
squares cost function. The L1 penalty causes a subset of the weights to become
zero, suggesting that the corresponding features may safely be discarded.

236

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

In Sec. 5.6.1, we saw that many regularization strategies can be interpreted as
MAP Bayesian inference, and that in particular, L2 regularization is equivalent
to MAP Bayesian inference with a Gaussian prior on the weights. For L1 regu-
larization, the penalty αΩ(w) = α


i |w i| used to regularize a cost function is

equivalent to the log-prior term that is maximized by MAP Bayesian inference
when the prior is an isotropic Laplace distribution (Eq. 3.26) over :w

log () =p w


i

log Laplace(wi ; 0,
1

α
) = −α



i

|wi| −+ log α log 2

From the point of view of learning via minimization with respect to w, we can

ignore the terms because they do not depend on .log log 2α− w

7.2 Norm Penalties as Constrained Optimization

Consider the cost function regularized by a parameter norm penalty:

J̃ , J , α .(;θ X y) = (;θ X y) + Ω()θ (7.18)

Recall from Sec. 4.4 that we can minimize a function subject to constraints by

constructing a generalized Lagrange function, consisting of the original objective
function plus a set of penalties. Each penalty is a product between a coefficient,
called a Karush–Kuhn–Tucker (KKT) multiplier, and a function representing
whether the constraint is satisfied. If we wanted to constrain Ω(θ) to be less than
some constant , we could construct a generalized Lagrange functionk

L(;) = (;) +θ, α X y, J θ X y, α(Ω())θ − k . (7.19)

The solution to the constrained problem is given by

θ∗ = arg min
θ

max
α,α≥0

L()θ, α . (7.20)

As described in Sec. 4.4, solving this problem requires modifying both θ and
α. Sec. 4.5 provides a worked example of linear regression with an L2 constraint.
Many different procedures are possible—some may use gradient descent, while

others may use analytical solutions for where the gradient is zero—but in all
procedures α must increase whenever Ω(θ)> k and decrease whenever Ω(θ)< k.
All positive α encourage Ω(θ) to shrink. The optimal valueα∗ will encourage Ω(θ)
to shrink, but not so strongly to make become less than .Ω()θ k

237

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

To gain some insight into the effect of the constraint, we can fix α∗ and view
the problem as just a function of :θ

θ∗ = arg min
θ

L(θ, α∗) = arg min
θ

J , α(;θ X y) + ∗Ω()θ . (7.21)

This is exactly the same as the regularized training problem of minimizing J̃.

We can thus think of a parameter norm penalty as imposing a constraint on the
weights. If is theΩ L2 norm, then the weights are constrained to lie in a L2 ball.
If is theΩ L1 norm, then the weights are constrained to lie in a region of limited
L1 norm. Usually we do not know the size of the constraint region that we impose
by using weight decay with coefficient α∗ because the value of α∗ does not directly

tell us the value of k. In principle, one can solve for k, but the relationship between
k and α∗ depends on the form of J . While we do not know the exact size of the
constraint region, we can control it roughly by increasing or decreasing α in order
to grow or shrink the constraint region. Larger α will result in a smaller constraint
region. Smaller will result in a larger constraint region.α

Sometimes we may wish to use explicit constraints rather than penalties. As
described in Sec. 4.4, we can modify algorithms such as stochastic gradient descent

to take a step downhill on J(θ) and then project θ back to the nearest point
that satisfies Ω(θ) < k. This can be useful if we have an idea of what value of k
is appropriate and do not want to spend time searching for the value of α that
corresponds to this .k

Another reason to use explicit constraints and reprojection rather than enforcing
constraints with penalties is that penalties can cause non-convex optimization
procedures to get stuck in local minima corresponding to small θ. When training
neural networks, this usually manifests as neural networks that train with several
“dead units.” These are units that do not contribute much to the behavior of the
function learned by the network because the weights going into or out of them are
all very small. When training with a penalty on the norm of the weights, these

configurations can be locally optimal, even if it is possible to significantly reduce
J by making the weights larger. Explicit constraints implemented by re-projection
can work much better in these cases because they do not encourage the weights
to approach the origin. Explicit constraints implemented by re-projection only
have an effect when the weights become large and attempt to leave the constraint
region.

Finally, explicit constraints with reprojection can be useful because they impose
some stability on the optimization procedure. When using high learning rates, it
is possible to encounter a positive feedback loop in which large weights induce
large gradients which then induce a large update to the weights. If these updates

238

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

consistently increase the size of the weights, then θ rapidly moves away from
the origin until numerical overflow occurs. Explicit constraints with reprojection
allow us to terminate this feedback loop after the weights have reached a certain
magnitude. Hinton (2012c) recommend using constraints combined with aet al.
high learning rate to allow rapid exploration of parameter space while maintaining
some stability.

In particular, Hinton (2012c) recommend constraining the norm of eachet al.
column of the weight matrix of a neural net layer, rather than constraining the
Frobenius norm of the entire weight matrix, a strategy introduced by Srebro and

Shraibman (2005). Constraining the norm of each column separately prevents any
one hidden unit from having very large weights. If we converted this constraint
into a penalty in a Lagrange function, it would be similar to L2 weight decay
but with a separate KKT multiplier for the weights of each hidden unit. Each of
these KKT multipliers would be dynamically updated separately to make each
hidden unit obey the constraint. In practice, column norm limitation is always
implemented as an explicit constraint with reprojection.

7.3 Regularization and Under-Constrained Problems

In some cases, regularization is necessary for machine learning problems to be

properly defined. Many linear models in machine learning, including linear re-
gression and PCA, depend on inverting the matrix XX . This is not possible

whenever XX is singular. This matrix can be singular whenever the data truly
has no variance in some direction, or when there are fewer examples (rows ofX)
than input features (columns of X). In this case, many forms of regularization

correspond to invertingX X + αI instead. This regularized matrix is guaranteed
to be invertible.

These linear problems have closed form solutions when the relevant matrix
is invertible. It is also possible for a problem with no closed form solution to be

underdetermined. An example is logistic regression applied to a problem where
the classes are linearly separable. If a weight vector w is able to achieve perfect

classification, then 2w will also achieve perfect classification and higher likelihood.
An iterative optimization procedure like stochastic gradient descent will continually

increase the magnitude ofw and, in theory, will never halt. In practice, a numerical
implementation of gradient descent will eventually reach sufficiently large weights
to cause numerical overflow, at which point its behavior will depend on how the
programmer has decided to handle values that are not real numbers.

Most forms of regularization are able to guarantee the convergence of iterative

239

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

methods applied to underdetermined problems. For example, weight decay will
cause gradient descent to quit increasing the magnitude of the weights when the
slope of the likelihood is equal to the weight decay coefficient.

The idea of using regularization to solve underdetermined problems extends
beyond machine learning. The same idea is useful for several basic linear algebra
problems.

As we saw in Sec. 2.9, we can solve underdetermined linear equations using
the Moore-Penrose pseudoinverse. Recall that one definition of the pseudoinverse
X + of a matrix isX

X+ = lim
α0

(XX I+ α)−1X. (7.22)

We can now recognize Eq. 7.22 as performing linear regression with weight decay.
Specifically, Eq. 7.22 is the limit of Eq. 7.13 as the regularization coefficient shrinks
to zero. We can thus interpret the pseudoinverse as stabilizing underdetermined
problems using regularization.

7.4 Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on
more data. Of course, in practice, the amount of data we have is limited. One way

to get around this problem is to create fake data and add it to the training set.
For some machine learning tasks, it is reasonably straightforward to create new
fake data.

This approach is easiest for classification. A classifier needs to take a compli-
cated, high dimensional input x and summarize it with a single category identity y.

This means that the main task facing a classifier is to be invariant to a wide variety
of transformations. We can generate new (x, y) pairs easily just by transforming

the inputs in our training set.x

This approach is not as readily applicable to many other tasks. For example, it
is difficult to generate new fake data for a density estimation task unless we have
already solved the density estimation problem.

Dataset augmentation has been a particularly effective technique for a specific

classification problem: object recognition. Images are high dimensional and include
an enormous variety of factors of variation, many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can
often greatly improve generalization, even if the model has already been designed to
be partially translation invariant by using the convolution and pooling techniques

240

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

described in Chapter 9. Many other operations such as rotating the image or
scaling the image have also proven quite effective.

One must be careful not to apply transformations that would change the correct
class. For example, optical character recognition tasks require recognizing the
difference between ’b’ and ’d’ and the difference between ’6’ and ’9’, so horizontal
flips and 180◦ rotations are not appropriate ways of augmenting datasets for these
tasks.

There are also transformations that we would like our classifiers to be invariant
to, but which are not easy to perform. For example, out-of-plane rotation can not
be implemented as a simple geometric operation on the input pixels.

Injecting noise in a neural network can also be seen as a form of data augmen-
tation. For many classification and even some regression tasks, the task should
still be possible to solve even if small random noise is added to the input. Neural
networks prove not to be very robust to noise, however (Tang and Eliasmith, 2010).

One way to improve the robustness of neural networks is simply to train them
with random noise applied to their inputs. Input noise injection is part of some

unsupervised learning algorithms such as the denoising autoencoder (Vincent ,et al.
2008). Noise injection also works when the noise is applied to the hidden units,
which can be seen as doing dataset augmentation at multiple levels of abstraction.

Poole (2014) recently showed that this approach can be highly effectiveet al.
provided that the magnitude of the noise is carefully tuned. Dropout, a powerful
regularization strategy that will be described in Sec. 7.12, can be seen as a process

of constructing new inputs by by noise.multiplying

When comparing machine learning benchmark results, it is important to take
the effect of dataset augmentation into account. Often, hand-designed dataset
augmentation schemes can dramatically reduce the generalization error of a machine
learning technique. To compare the performance of one machine learning algorithm
to another, it is necessary to perform controlled experiments. When comparing
machine learning algorithm A and machine learning algorithm B, it is necessary
to make sure that both algorithms were evaluated using the same hand-designed
dataset augmentation schemes. Suppose that algorithm A performs poorly with

no dataset augmentation and algorithm B performs well when combined with
numerous synthetic transformations of the input. In such a case it is likely the
synthetic transformations caused the improved performance, rather than the use
of machine learning algorithm B. Sometimes deciding whether an experiment
has been properly controlled requires subjective judgment. For example, machine
learning algorithms that inject noise into the input are performing a form of dataset
augmentation. Usually, operations that are generally applicable (such as adding

241

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Gaussian noise to the input) are considered part of the machine learning algorithm,
while operations that are specific to one application domain (such as randomly
cropping an image) are considered to be separate pre-processing steps.

7.5 Noise Robustness

Sec. 7.4 has motivated the use of noise applied to the inputs as a dataset aug-

mentation strategy. For some models, the addition of noise with infinitesimal
variance at the input of the model is equivalent to imposing a penalty on the
norm of the weights (Bishop, 1995a,b). In the general case, it is important to

remember that noise injection can be much more powerful than simply shrinking
the parameters, especially when the noise is added to the hidden units. Noise
applied to the hidden units is such an important topic as to merit its own separate

discussion; the dropout algorithm described in Sec. 7.12 is the main development
of that approach.

Another way that noise has been used in the service of regularizing models

is by adding it to the weights. This technique has been used primarily in the
context of recurrent neural networks (Jim et al., 1996; Graves, 2011). This can

be interpreted as a stochastic implementation of a Bayesian inference over the
weights. The Bayesian treatment of learning would consider the model weights

to be uncertain and representable via a probability distribution that reflects this
uncertainty. Adding noise to the weights is a practical, stochastic way to reflect

this uncertainty (Graves, 2011).

This can also be interpreted as equivalent (under some assumptions) to a
more traditional form of regularization. Adding noise to the weights has been
shown to be an effective regularization strategy in the context of recurrent neural
networks (Jim , 1996; Graves, 2011). In the following, we will present anet al.
analysis of the effect of weight noise on a standard feedforward neural network (as
introduced in Chapter 6).

We study the regression setting, where we wish to train a function ŷ(x) that

maps a set of features x to a scalar using the least-squares cost function between
the model predictions ŷ()x and the true values :y

J = Ep x,y()


(ŷ())x − y 2


. (7.23)

We assume we are given a dataset of m labeled examples {(x (1), y (1)), . . . ,(x()m , y ()m)}.
We now assume that with each input presentation we also include a random

perturbation W ∼ N ( ;0, ηI) of the network weights. Let us imagine that we

242

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

have a standard l-layer MLP. We denote the perturbed model as ŷW (x). Despite
the injection of noise, we are still interested in minimizing the squared error of the
output of the network. The objective function thus becomes:

J̃W = Ep ,y,(x W)


(ŷW ())x − y 2



= Ep ,y,(x W)


ŷ 2W() 2 ˆx − yy W() +x y2


. (7.24)

For small η , the minimization of J with added weight noise (with covariance
ηI) is equivalent to minimization of J with an additional regularization term:
ηEp ,y(x)


∇W ŷ()x 2


. This form of regularization encourages the parameters to

go to regions of parameter space where small perturbations of the weights have
a relatively small influence on the output. In other words, it pushes the model
into regions where the model is relatively insensitive to small variations in the
weights, finding points that are not merely minima, but minima surrounded by
flat regions (Hochreiter and Schmidhuber, 1995). In the simplified case of linear
regression (where, for instance, ŷ(x) = wx+b), this regularization term collapses

into ηEp()x

 x 2

, which is not a function of parameters and therefore does not

contribute to the gradient of J̃W with respect to the model parameters.

7.5.1 Injecting Noise at the Output Targets

Most datasets have some amount of mistakes in the y labels. It can be harmful
to maximize log p(y | x) when y is a mistake. One way to prevent this is to

explicitly model the noise on the labels. For example, we can assume that for some
small constant , the training set label y is correct with probability 1 − , and
otherwise any of the other possible labels might be correct. This assumption is
easy to incorporate into the cost function analytically, rather than by explicitly

drawing noise samples. For example, label smoothing regularizes a model based
on a softmax with k output values by replacing the hard and classification0 1

targets with targets of k and 1 − k−1
k , respectively. The standard cross-entropy

loss may then be used with these soft targets. Maximum likelihood learning with a
softmax classifier and hard targets may actually never converge—the softmax can
never predict a probability of exactly or exactly , so it will continue to learn0 1
larger and larger weights, making more extreme predictions forever. It is possible

to prevent this scenario using other regularization strategies like weight decay.
Label smoothing has the advantage of preventing the pursuit of hard probabilities
without discouraging correct classification. This strategy has been used since
the 1980s and continues to be featured prominently in modern neural networks
(Szegedy , 2015).et al.

243

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

7.6 Semi-Supervised Learning

In the paradigm of semi-supervised learning, both unlabeled examples from P (x)
and labeled examples from P (x y,) are used to estimate P(y x|) or predict y from
x.

In the context of deep learning, semi-supervised learning usually refers to
learning a representation h = f (x). The goal is to learn a representation so
that examples from the same class have similar representations. Unsupervised
learning can provide useful cues for how to group examples in representation

space. Examples that cluster tightly in the input space should be mapped to
similar representations. A linear classifier in the new space may achieve better
generalization in many cases (Belkin and Niyogi, 2002; Chapelle , 2003). Aet al.
long-standing variant of this approach is the application of principal components
analysis as a pre-processing step before applying a classifier (on the projected
data).

Instead of having separate unsupervised and supervised components in the
model, one can construct models in which a generative model of either P (x) or
P(x y,) shares parameters with a discriminative model of P(y x|). One can
then trade-off the supervised criterion − log P (y x|) with the unsupervised or
generative one (such as − log P(x) or − log P(x y,)). The generative criterion then

expresses a particular form of prior belief about the solution to the supervised
learning problem (Lasserre , 2006), namely that the structure ofet al. P(x) is
connected to the structure of P (y x|) in a way that is captured by the shared
parametrization. By controlling how much of the generative criterion is included
in the total criterion, one can find a better trade-off than with a purely generative
or a purely discriminative training criterion (Lasserre , 2006; Larochelle andet al.
Bengio, 2008).

In the context of scarcity of labeled data (and abundance of unlabeled data),
deep architectures have shown promise as well. Salakhutdinov and Hinton (2008)
describe a method for learning the kernel function of a kernel machine used for
regression, in which the usage of unlabeled examples for modeling P (x) improves

P ()y x| quite significantly.

See Chapelle (2006) for more information about semi-supervised learning.et al.

244

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

7.7 Multi-Task Learning

Multi-task learning (Caruana, 1993) is a way to improve generalization by pooling
the examples (which can be seen as soft constraints imposed on the parameters)
arising out of several tasks. In the same way that additional training examples
put more pressure on the parameters of the model towards values that generalize

well, when part of a model is shared across tasks, that part of the model is more

constrained towards good values (assuming the sharing is justified), often yielding
better generalization.

h(1)h(1) h(2)h(2) h(3)h(3)

y(1)y(1) y(2)y(2)

h(shared)h(shared)

xx

Figure 7.2: Multi-task learning can be cast in several ways in deep learning frameworks
and this figure illustrates the common situation where the tasks share a common input but
involve different target random variables. The lower layers of a deep network (whether it
is supervised and feedforward or includes a generative component with downward arrows)
can be shared across such tasks, while task-specific parameters (associated respectively
with the weights into and from h (1) andh(2)) can be learned on top of those yielding a
shared representation h(shared) . The underlying assumption is that there exists a common
pool of factors that explain the variations in the input x , while each task is associated
with a subset of these factors. In this example, it is additionally assumed that top-level
hidden units h(1) and h(2) are specialized to each task (respectively predicting y(1) and
y (2)) while some intermediate-level representation h(shared) is shared across all tasks. In
the unsupervised learning context, it makes sense for some of the top-level factors to be
associated with none of the output tasks (h(3)): these are the factors that explain some of
the input variations but are not relevant for predicting y(1) or y (2).

Fig. 7.2 illustrates a very common form of multi-task learning, in which different
supervised tasks (predicting y()i given x) share the same input x, as well as some
intermediate-level representation h(shared) capturing a common pool of factors. The

245

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

model can generally be divided into two kinds of parts and associated parameters:

1. Task-specific parameters (which only benefit from the examples of their task
to achieve good generalization). These are the upper layers of the neural
network in Fig. 7.2.

2. Generic parameters, shared across all the tasks (which benefit from the

pooled data of all the tasks). These are the lower layers of the neural network

in Fig. 7.2.

Improved generalization and generalization error bounds (Baxter, 1995) can be
achieved because of the shared parameters, for which statistical strength can be
greatly improved (in proportion with the increased number of examples for the

shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the

data associated with the different tasks, some are shared across two or
more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit

the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See Fig. 7.3 for an example of this behavior.

This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,

hopefully better test set error) by returning to the parameter setting at the point
in time with the lowest validation set error. Instead of running our optimization
algorithm until we reach a (local) minimum of validation error, we run it until the
error on the validation set has not improved for some amount of time. Every time
the error on the validation set improves, we store a copy of the model parameters.
When the training algorithm terminates, we return these parameters, rather than
the latest parameters. This procedure is specified more formally in Algorithm 7.1.

This strategy is known as early stopping. It is probably the most commonly
used form of regularization in deep learning. Its popularity is due both to its
effectiveness and its simplicity.

246

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
os

s
(n

eg
a
ti
v
e

lo
g
 l
ik

el
ih

oo
d
)

Learning curves

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

One way to think of early stopping is as a very efficient hyperparameter selection
algorithm. In this view, the number of training steps is just another hyperparameter.
We can see in Fig. 7.3 that this hyperparameter has a U-shaped validation set

performance curve. Most hyperparameters that control model capacity have such a

U-shaped validation set performance curve, as illustrated in Fig. 5.3. In the case of
early stopping, we are controlling the effective capacity of the model by determining
how many steps it can take to fit the training set. Most hyperparameters must be

chosen using an expensive guess and check process, where we set a hyperparameter
at the start of training, then run training for several steps to see its effect. The
“training time” hyperparameter is unique in that by definition a single run of

training tries out many values of the hyperparameter. The only significant cost
to choosing this hyperparameter automatically via early stopping is running the
validation set evaluation periodically during training. Ideally, this is done in

parallel to the training process on a separate machine, separate CPU, or separate
GPU from the main training process. If such resources are not available, then the
cost of these periodic evaluations may be reduced by using a validation set that is

small compared to the training set or by evaluating the validation set error less
frequently and obtaining a lower resolution estimate of the optimal training time.

An additional cost to early stopping is the need to maintain a copy of the
best parameters. This cost is generally negligible, because it is acceptable to store

these parameters in a slower and larger form of memory (for example, training in

247

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

GPU memory, but storing the optimal parameters in host memory or on a disk
drive). Since the best parameters are written to infrequently and never read during
training, these occasional slow writes have little effect on the total training time.

Early stopping is a very unobtrusive form of regularization, in that it requires
almost no change in the underlying training procedure, the objective function,
or the set of allowable parameter values. This means that it is easy to use early
stopping without damaging the learning dynamics. This is in contrast to weight
decay, where one must be careful not to use too much weight decay and trap the
network in a bad local minimum corresponding to a solution with pathologically

small weights.

Early stopping may be used either alone or in conjunction with other regulariza-
tion strategies. Even when using regularization strategies that modify the objective

function to encourage better generalization, it is rare for the best generalization to

occur at a local minimum of the training objective.

Early stopping requires a validation set, which means some training data is not
fed to the model. To best exploit this extra data, one can perform extra training

after the initial training with early stopping has completed. In the second, extra
training step, all of the training data is included. There are two basic strategies
one can use for this second training procedure.

One strategy (Algorithm 7.2) is to initialize the model again and retrain on all
of the data. In this second training pass, we train for the same number of steps as

the early stopping procedure determined was optimal in the first pass. There are
some subtleties associated with this procedure. For example, there is not a good
way of knowing whether to retrain for the same number of parameter updates or
the same number of passes through the dataset. On the second round of training,
each pass through the dataset will require more parameter updates because the
training set is bigger.

Another strategy for using all of the data is to keep the parameters obtained
from the first round of training and then continue training but now using all of
the data. At this stage, we now no longer have a guide for when to stop in terms
of a number of steps. Instead, we can monitor the average loss function on the

validation set, and continue training until it falls below the value of the training
set objective at which the early stopping procedure halted. This strategy avoids
the high cost of retraining the model from scratch, but is not as well-behaved. For

example, there is not any guarantee that the objective on the validation set will
ever reach the target value, so this strategy is not even guaranteed to terminate.
This procedure is presented more formally in Algorithm 7.3.

Early stopping is also useful because it reduces the computational cost of the

248

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

w1

w
2

w∗

w̃

w1

w
2

w ∗

w̃

Figure 7.4: An illustration of the effect of early stopping. (Left) The solid contour
lines indicate the contours of the negative log-likelihood. The dashed line indicates the
trajectory taken by SGD beginning from the origin. Rather than stopping at the point
w∗ that minimizes the cost, early stopping results in the trajectory stopping at an earlier
point w̃. An illustration of the effect of(Right) L2 regularization for comparison. The
dashed circles indicate the contours of the L2 penalty, which causes the minimum of the
total cost to lie nearer the origin than the minimum of the unregularized cost.

training procedure. Besides the obvious reduction in cost due to limiting the number
of training iterations, it also has the benefit of providing regularization without

requiring the addition of penalty terms to the cost function or the computation of
the gradients of such additional terms.

How early stopping acts as a regularizer: So far we have stated that early
stopping a regularization strategy, but we have supported this claim only byis

showing learning curves where the validation set error has a U-shaped curve. What
is the actual mechanism by which early stopping regularizes the model? Bishop
(1995a) and Sjöberg and Ljung (1995) argued that early stopping has the effect of
restricting the optimization procedure to a relatively small volume of parameter

space in the neighborhood of the initial parameter value θo. More specifically,
imagine taking τ optimization steps (corresponding to τ training iterations) and
with learning rate  . We can view the product τ as a measure of effective capacity.
Assuming the gradient is bounded, restricting both the number of iterations and
the learning rate limits the volume of parameter space reachable from θo . In this
sense, τ behaves as if it were the reciprocal of the coefficient used for weight decay.

Indeed, we can show how—in the case of a simple linear model with a quadratic
error function and simple gradient descent—early stopping is equivalent to L2

249

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

regularization.

In order to compare with classical L2 regularization, we examine a simple
setting where the only parameters are linear weights (θ = w). We can model
the cost function J with a quadratic approximation in the neighborhood of the
empirically optimal value of the weights w∗:

Ĵ J() = θ (w∗) +
1

2
(w w− ∗)H θ θ(− ∗), (7.25)

where H is the Hessian matrix of J with respect to w evaluated atw∗ . Given the
assumption that w∗ is a minimum of J (w), we know thatH is positive semidefinite.
Under a local Taylor series approximation, the gradient is given by:

∇w Ĵ() = (w H w w− ∗). (7.26)

We are going to study the trajectory followed by the parameter vector during
training. For simplicity, let us set the initial parameter vector to the origin3, that
is w(0) = 0. Let us suppose that we update the parameters via gradient descent:

w()τ = w (1)τ− − ∇wJ(w(1)τ−)

= w (1)τ− − H w((1)τ− −w∗)

w()τ −w∗ = ()(I H−  w (1)τ− −w∗) (7.27)

Let us now rewrite this expression in the space of the eigenvectors of H , exploiting
the eigendecomposition of H: H =Q QΛ  , where Λ is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w()τ −w∗ = (I Q Q−  Λ )(w(1)τ− −w∗)

Q(w()τ −w∗) = ()I − Λ Q(w (1)τ− −w∗) (7.28)

Assuming that w(0) = 0 and that  is chosen to be small enough to guarantee
|1 − λi | < 1, the parameter trajectory during training after τ parameter updates
is as follows:

Qw()τ = [()I − I − Λ τ]Q w∗ . (7.29)

3
For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize

all the parameters to 0, as discussed in Sec. 6.2. However, the argument holds for any other
initial value w(0).

250

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Now, the expression for Qw̃ in Eqn. 7.9 for L2 regularization can be rearranged
as:

Qw̃ I= (+Λ α) −1ΛQw∗

Qw̃ I I= [− (+Λ α)−1α]Qw∗ (7.30)

Comparing Eqs 7.29 and 7.30, we see that if the hyperparameters , α, and τ are
chosen such that

()I − Λ τ = (+)Λ αI −1α, (7.31)

then L2 regularization and early stopping can be seen to be equivalent (at least
under the quadratic approximation of the objective function). Going even further,
by taking logarithms and using the series expansion for log(1 + x), we can conclude
that if all λi are small (that is, λi  1 and λ i/α  1) then

τ ≈
1

α
,

α ≈
1

τ
. (7.32)

That is, under these assumptions, the number of training iterations τ plays a role

inversely proportional to the L2 regularization parameter, and the inverse of τ
plays the role of the weight decay coefficient.

Parameter values corresponding to directions of significant curvature (of the
objective function) are regularized less than directions of less curvature. Of course,
in the context of early stopping, this really means that parameters that correspond
to directions of significant curvature tend to learn early relative to parameters
corresponding to directions of less curvature.

The derivations in this section have shown that a trajectory of length τ ends

at a point that corresponds to a minimum of the L2-regularized objective. Early
stopping is of course more than the mere restriction of the trajectory length;
instead, early stopping typically involves monitoring the validation set error in

order to stop the trajectory at a particularly good point in space. Early stopping
therefore has the advantage over weight decay that early stopping automatically
determines the correct amount of regularization while weight decay requires many
training experiments with different values of its hyperparameter.

7.9 Parameter Tying and Parameter Sharing

Thus far, in this chapter, when we have discussed adding constraints or penalties
to the parameters, we have always done so with respect to a fixed region or point.

251

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

For example, L2 regularization (or weight decay) penalizes model parameters for
deviating from the fixed value of zero. However, sometimes we may need other
ways to express our prior knowledge about suitable values of the model parameters.
Sometimes we might not know precisely what values the parameters should take
but we know, from knowledge of the domain and model architecture, that there
should be some dependencies between the model parameters.

A common type of dependency that we often want to express is that certain
parameters should be close to one another. Consider the following scenario: we
have two models performing the same classification task (with the same set of

classes) but with somewhat different input distributions. Formally, we have model
A with parameters w()A and modelB with parameters w()B . The two models
map the input to two different, but related outputs: ŷ ()A = f(w()A ,x) and
ŷ ()B = (g w()B ,x).

Let us imagine that the tasks are similar enough (perhaps with similar input
and output distributions) that we believe the model parameters should be close

to each other: ∀i, w()A
i

should be close to w()B
i

. We can leverage this information

through regularization. Specifically, we can use a parameter norm penalty of the
form: Ω(w ()A ,w ()B) = w()A −w()B 22 . Here we used anL 2 penalty, but other

choices are also possible.

This kind of approach was proposed by Lasserre (2006), who regularizedet al.
the parameters of one model, trained as a classifier in a supervised paradigm, to

be close to the parameters of another model, trained in an unsupervised paradigm
(to capture the distribution of the observed input data). The architectures were
constructed such that many of the parameters in the classifier model could be
paired to corresponding parameters in the unsupervised model.

While a parameter norm penalty is one way to regularize parameters to be

close to one another, the more popular way is to use constraints: to force sets of
parameters to be equal. This method of regularization is often referred to as

parameter sharing, where we interpret the various models or model components as
sharing a unique set of parameters. A significant advantage of parameter sharing
over regularizing the parameters to be close (via a norm penalty) is that only a
subset of the parameters (the unique set) need to be stored in memory. In certain
models—such as the convolutional neural network—this can lead to significant

reduction in the memory footprint of the model.

Convolutional Neural Networks By far the most popular and extensive use
of parameter sharing occurs in convolutional neural networks (CNNs) applied to
computer vision.

252

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Natural images have many statistical properties that are invariant to translation.
For example, a photo of a cat remains a photo of a cat if it is translated one pixel
to the right. CNNs take this property into account by sharing parameters across
multiple image locations. The same feature (a hidden unit with the same weights)
is computed over different locations in the input. This means that we can find a
cat with the same cat detector whether the cat appears at column i or column
i + 1 in the image.

Parameter sharing has allowed CNNs to dramatically lower the number of unique
model parameters and to significantly increase network sizes without requiring a

corresponding increase in training data. It remains one of the best examples of
how to effectively incorporate domain knowledge into the network architecture.

CNNs will be discussed in more detail in Chapter 9.

7.10 Sparse Representations

Weight decay acts by placing a penalty directly on the model parameters. Another
strategy is to place a penalty on the activations of the units in a neural network,

encouraging their activations to be sparse. This indirectly imposes a complicated
penalty on the model parameters.

We have already discussed (in Sec. 7.1.2) how L1 penalization induces a sparse
parametrization—meaning that many of the parameters become zero (or close to
zero). Representational sparsity, on the other hand, describes a representation
where many of the elements of the representation are zero (or close to zero).
A simplified view of this distinction can be illustrated in the context of linear
regression:




18
5

15
−9

−3




=




4 0 0 2 0 0−
0 0 1 0 3 0−
0 5 0 0 0 0
1 0 0 1 0 4− −
1 0 0 0 5 0−







2

3
−2
−5

1

4




y ∈ Rm A ∈ R
m n× x ∈ Rn

(7.33)

253

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING




−14
1
1
2

23




=




3 1 2 5 4 1− −
4 2 3 1 1 3− −

− − −1 5 4 2 3 2
3 1 2 3 0 3− −

− − − −5 4 2 2 5 1







0
2
0
0

−3
0




y ∈ R
m B ∈ R

m n× h ∈ R
n

(7.34)

In the first expression, we have an example of a sparsely parametrized linear
regression model. In the second, we have linear regression with a sparse representa-
tion h of the data x . That is, h is a function of x that, in some sense, represents
the information present in , but does so with a sparse vector.x

Representational regularization is accomplished by the same sorts of mechanisms
that we have used in parameter regularization.

Norm penalty regularization of representations is performed by adding to the
loss function J a norm penalty on the representation, denoted Ω(h). As before, we
denote the regularized loss function by J̃ :

J̃ , J , α(;θ X y) = (;θ X y) + Ω()h (7.35)

where α ∈ [0,∞) weights the relative contribution of the norm penalty term, with
larger values of corresponding to more regularization.α

Just as an L1 penalty on the parameters induces parameter sparsity, an L1

penalty on the elements of the representation induces representational sparsity:
Ω(h) = || ||h 1 =


i |hi|. Of course, the L1 penalty is only one choice of penalty

that can result in a sparse representation. Others include the penalty derived from

a Student-t prior on the representation (Olshausen and Field, 1996; Bergstra, 2011)
and KL divergence penalties (Larochelle and Bengio, 2008) that are especially
useful for representations with elements constrained to lie on the unit interval.

Lee (2008) and Goodfellow (2009) both provide examples of strategieset al. et al.
based on regularizing the average activation across several examples, 1

m


ih
()i , to

be near some target value, such as a vector with .01 for each entry.

Other approaches obtain representational sparsity with a hard constraint on
the activation values. For example, orthogonal matching pursuit (Pati ,et al.
1993) encodes an input x with the representation h that solves the constrained
optimization problem

arg min
h h, 0<k

 − x Wh 2 , (7.36)

where  h 0 is the number of non-zero entries of h. This problem can be solved
efficiently when W is constrained to be orthogonal. This method is often called

254

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

OMP-k with the value of k specified to indicate the number of non-zero features
allowed. Coates and Ng (2011) demonstrated that OMP- can be a very effective1
feature extractor for deep architectures.

Essentially any model that has hidden units can be made sparse. Throughout
this book, we will see many examples of sparsity regularization used in a variety of
contexts.

7.11 Bagging and Other Ensemble Methods

Bagging bootstrap aggregating(short for) is a technique for reducing generalization
error by combining several models (Breiman, 1994). The idea is to train several

different models separately, then have all of the models vote on the output for test
examples. This is an example of a general strategy in machine learning called model
averaging. Techniques employing this strategy are known as ensemble methods.

The reason that model averaging works is that different models will usually
not make all the same errors on the test set.

Consider for example a set of k regression models. Suppose that each model
makes an error i on each example, with the errors drawn from a zero-mean
multivariate normal distribution with variances E[2i] = v and covariances E[ij] =

c. Then the error made by the average prediction of all the ensemble models is
1
k


i i. The expected squared error of the ensemble predictor is

E





1

k



i

i

2
=

1

k2
E




i


 2i+



j i=
ij




 (7.37)

=
1

k
v +

k − 1

k
c. (7.38)

In the case where the errors are perfectly correlated and c= v, the mean squared

error reduces to v, so the model averaging does not help at all. In the case where
the errors are perfectly uncorrelated and c = 0, the expected squared error of the
ensemble is only 1

k v. This means that the expected squared error of the ensemble
decreases linearly with the ensemble size. In other words, on average, the ensemble
will perform at least as well as any of its members, and if the members make
independent errors, the ensemble will perform significantly better than its members.

Different ensemble methods construct the ensemble of models in different ways.
For example, each member of the ensemble could be formed by training a completely

different kind of model using a different algorithm or objective function. Bagging

255

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

8

8

First ensemble member

Second ensemble member

Original dataset

First resampled dataset

Second resampled dataset

Figure 7.5: A cartoon depiction of how bagging works. Suppose we train an ‘8’ detector
on the dataset depicted above, containing an ‘8’, a ‘6’ and a ‘9’. Suppose we make two
different resampled datasets. The bagging training procedure is to construct each of these
datasets by sampling with replacement. The first dataset omits the ‘9’ and repeats the ‘8’.
On this dataset, the detector learns that a loop on top of the digit corresponds to an ‘8’.
On the second dataset, we repeat the ‘9’ and omit the ‘6’. In this case, the detector learns
that a loop on the bottom of the digit corresponds to an ‘8’. Each of these individual
classification rules is brittle, but if we average their output then the detector is robust,
achieving maximal confidence only when both loops of the ‘8’ are present.

is a method that allows the same kind of model, training algorithm and objective
function to be reused several times.

Specifically, bagging involves constructing k different datasets. Each dataset
has the same number of examples as the original dataset, but each dataset is
constructed by sampling with replacement from the original dataset. This means
that, with high probability, each dataset is missing some of the examples from the
original dataset and also contains several duplicate examples (on average around
2/3 of the examples from the original dataset are found in the resulting training
set, if it has the same size as the original). Model i is then trained on dataset

i. The differences between which examples are included in each dataset result in
differences between the trained models. See Fig. 7.5 for an example.

Neural networks reach a wide enough variety of solution points that they can
often benefit from model averaging even if all of the models are trained on the same
dataset. Differences in random initialization, random selection of minibatches,
differences in hyperparameters, or different outcomes of non-deterministic imple-
mentations of neural networks are often enough to cause different members of the
ensemble to make partially independent errors.

256

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Model averaging is an extremely powerful and reliable method for reducing
generalization error. Its use is usually discouraged when benchmarking algorithms
for scientific papers, because any machine learning algorithm can benefit substan-
tially from model averaging at the price of increased computation and memory.
For this reason, benchmark comparisons are usually made using a single model.

Machine learning contests are usually won by methods using model averag-
ing over dozens of models. A recent prominent example is the Netflix Grand
Prize (Koren, 2009).

Not all techniques for constructing ensembles are designed to make the ensemble
more regularized than the individual models. For example, a technique called

boosting (Freund and Schapire, 1996b,a) constructs an ensemble with higher capacity
than the individual models. Boosting has been applied to build ensembles of neural

networks (Schwenk and Bengio, 1998) by incrementally adding neural networks to

the ensemble. Boosting has also been applied interpreting an individual neural
network as an ensemble (Bengio , 2006a), incrementally adding hidden unitset al.
to the neural network.

7.12 Dropout

Dropout (Srivastava , 2014) provides a computationally inexpensive butet al.
powerful method of regularizing a broad family of models. To a first approximation,
dropout can be thought of as a method of making bagging practical for ensembles
of very many large neural networks. Bagging involves training multiple models,
and evaluating multiple models on each test example. This seems impractical
when each model is a large neural network, since training and evaluating such
networks is costly in terms of runtime and memory. It is common to use ensembles
of five to ten neural networks—Szegedy (2014a) used six to win the ILSVRC—et al.
but more than this rapidly becomes unwieldy. Dropout provides an inexpensive
approximation to training and evaluating a bagged ensemble of exponentially many

neural networks.

Specifically, dropout trains the ensemble consisting of all sub-networks that
can be formed by removing non-output units from an underlying base network,
as illustrated in Fig. 7.6. In most modern neural networks, based on a series of
affine transformations and nonlinearities, we can effectively remove a unit from a

network by multiplying its output value by zero. This procedure requires some
slight modification for models such as radial basis function networks, which take

the difference between the unit’s state and some reference value. Here, we present
the dropout algorithm in terms of multiplication by zero for simplicity, but it can

257

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

be trivially modified to work with other operations that remove a unit from the
network.

Recall that to learn with bagging, we define k different models, construct k
different datasets by sampling from the training set with replacement, and then
train model i on dataset i. Dropout aims to approximate this process, but with an
exponentially large number of neural networks. Specifically, to train with dropout,
we use a minibatch-based learning algorithm that makes small steps, such as
stochastic gradient descent. Each time we load an example into a minibatch, we
randomly sample a different binary mask to apply to all of the input and hidden

units in the network. The mask for each unit is sampled independently from all of
the others. The probability of sampling a mask value of one (causing a unit to be
included) is a hyperparameter fixed before training begins. It is not a function
of the current value of the model parameters or the input example. Typically,
an input unit is included with probability 0.8 and a hidden unit is included with
probability 0.5. We then run forward propagation, back-propagation, and the
learning update as usual. Fig. 7.7 illustrates how to run forward propagation with
dropout.

More formally, suppose that a mask vector µ specifies which units to include,
and J(θ µ,) defines the cost of the model defined by parameters θ and mask µ.
Then dropout training consists in minimizing EµJ (θ µ,). The expectation contains

exponentially many terms but we can obtain an unbiased estimate of its gradient
by sampling values of .µ

Dropout training is not quite the same as bagging training. In the case of
bagging, the models are all independent. In the case of dropout, the models share

parameters, with each model inheriting a different subset of parameters from the
parent neural network. This parameter sharing makes it possible to represent an
exponential number of models with a tractable amount of memory. In the case of
bagging, each model is trained to convergence on its respective training set. In the
case of dropout, typically most models are not explicitly trained at all—usually,
the model is large enough that it would be infeasible to sample all possible sub-
networks within the lifetime of the universe. Instead, a tiny fraction of the possible

sub-networks are each trained for a single step, and the parameter sharing causes
the remaining sub-networks to arrive at good settings of the parameters. These
are the only differences. Beyond these, dropout follows the bagging algorithm. For
example, the training set encountered by each sub-network is indeed a subset of
the original training set sampled with replacement.

To make a prediction, a bagged ensemble must accumulate votes from all of
its members. We refer to this process as inference in this context. So far, our

258

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

yy

h1h1 h 2h 2

x1x1 x 2x 2

yy

h1h1 h2h2

x1x1 x2x2

yy

h 1h 1 h2h2

x2x2

yy

h 1h 1 h 2h 2

x 1x 1

yy

h2h2

x1x1 x2x2

yy

h1h1

x1x1 x2x2

yy

h 1h 1 h2h2

yy

x 1x 1 x 2x 2

yy

h2h2

x2x2

yy

h1h1

x1x1

yy

h 1h 1

x2x2

yy

h 2h 2

x 1x 1

yy

x1x1

yy

x2x2

yy

h2h2

yy

h 1h 1

yy

Base network

Ensemble of Sub-Networks

Figure 7.6: Dropout trains an ensemble consisting of all sub-networks that can be
constructed by removing non-output units from an underlying base network. Here, we
begin with a base network with two visible units and two hidden units. There are sixteen
possible subsets of these four units. We show all sixteen subnetworks that may be formed
by dropping out different subsets of units from the original network. In this small example,
a large proportion of the resulting networks have no input units or no path connecting
the input to the output. This problem becomes insignificant for networks with wider
layers, where the probability of dropping all possible paths from inputs to outputs becomes
smaller.

259

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

x̂1̂x1

µx1µx1 x1x1

x̂2̂x2

x2x2 µx2µx2

h1h1 h2h2µh1µh1 µh2µh2

ĥ 1̂h1 ĥ 2̂h2

yy

yy

h1h1 h2h2

x1x1 x2x2

Figure 7.7: An example of forward propagation through a feedforward network using
dropout. (Top) In this example, we use a feedforward network with two input units, one
hidden layer with two hidden units, and one output unit. To perform forward(Bottom)
propagation with dropout, we randomly sample a vector µ with one entry for each input
or hidden unit in the network. The entries of µ are binary and are sampled independently
from each other. The probability of each entry being is a hyperparameter, usually1 0.5
for the hidden layers and 0.8 for the input. Each unit in the network is multiplied by
the corresponding mask, and then forward propagation continues through the rest of the
network as usual. This is equivalent to randomly selecting one of the sub-networks from
Fig. 7.6 and running forward propagation through it.

260

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

description of bagging and dropout has not required that the model be explicitly
probabilistic. Now, we assume that the model’s role is to output a probability
distribution. In the case of bagging, eachmodel i produces a probability distribution
p()i (y | x). The prediction of the ensemble is given by the arithmetic mean of all
of these distributions,

1

k

k

i=1

p()i ()y | x . (7.39)

In the case of dropout, each sub-model defined by mask vector µ defines a prob-
ability distribution p (y ,| x µ). The arithmetic mean over all masks is given
by 

µ

p p y ,()µ (| x µ) (7.40)

where p(µ) is the probability distribution that was used to sample µ at training
time.

Because this sum includes an exponential number of terms, it is intractable
to evaluate except in cases where the structure of the model permits some form
of simplification. So far, deep neural nets are not known to permit any tractable

simplification. Instead, we can approximate the inference with sampling, by
averaging together the output from many masks. Even 10-20 masks are often
sufficient to obtain good performance.

However, there is an even better approach, that allows us to obtain a good
approximation to the predictions of the entire ensemble, at the cost of only one
forward propagation. To do so, we change to using the geometric mean rather than
the arithmetic mean of the ensemble members’ predicted distributions. Warde-

Farley (2014) present arguments and empirical evidence that the geometricet al.
mean performs comparably to the arithmetic mean in this context.

The geometric mean of multiple probability distributions is not guaranteed to be
a probability distribution. To guarantee that the result is a probability distribution,
we impose the requirement that none of the sub-models assigns probability 0 to any

event, and we renormalize the resulting distribution. The unnormalized probability

distribution defined directly by the geometric mean is given by

p̃ensemble() =y | x 2d



µ

p y ,(| x µ) (7.41)

where d is the number of units that may be dropped. Here we use a uniform
distribution over µ to simplify the presentation, but non-uniform distributions are

261

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

also possible. To make predictions we must re-normalize the ensemble:

pensemble() =y | x p̃ensemble()y | x
y  p̃ensemble(y

 | x)
. (7.42)

A key insight (Hinton , 2012c) involved in dropout is that we can approxi-et al.
mate pensemble by evaluating p(y | x) in one model: the model with all units, but
with the weights going out of unit i multiplied by the probability of including unit

i. The motivation for this modification is to capture the right expected value of
the output from that unit. We call this approach the weight scaling inference rule.
There is not yet any theoretical argument for the accuracy of this approximate

inference rule in deep nonlinear networks, but empirically it performs very well.

Because we usually use an inclusion probability of 12 , the weight scaling rule
usually amounts to dividing the weights by at the end of training, and then using2

the model as usual. Another way to achieve the same result is to multiply the
states of the units by during training. Either way, the goal is to make sure that2

the expected total input to a unit at test time is roughly the same as the expected

total input to that unit at train time, even though half the units at train time are
missing on average.

For many classes of models that do not have nonlinear hidden units, the weight

scaling inference rule is exact. For a simple example, consider a softmax regression

classifier with input variables represented by the vector :n v

P y(= y | v) = softmax

Wv + b


y
. (7.43)

We can index into the family of sub-models by element-wise multiplication of the
input with a binary vector :d

P y(= y | v; d) = softmax

W () +d  v b


y
. (7.44)

The ensemble predictor is defined by re-normalizing the geometric mean over all
ensemble members’ predictions:

Pensemble(=) =y y | v P̃ensemble(=)y y | v
y P̃ensemble(= y y  | v)

(7.45)

where

P̃ensemble(=) =y y | v 2
n

 

d∈{ }0 1, n

P y(= y | v; d). (7.46)

262

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

To see that the weight scaling rule is exact, we can simplify P̃ensemble:

P̃ensemble (=) =y y | v 2
n

 

d∈{ }0 1, n

P y(= y | v; d) (7.47)

= 2
n

 

d∈{ }0 1, n

softmax (W () +d  v b)y (7.48)

= 2n




d∈{ }0 1, n

exp

W
y,:() +d  v b



y exp

W 
y,:() +d  v b

 (7.49)

=

2n


d∈{ }0 1, n exp

W
y,: () +d  v b



2n


d∈{ }0 1, n


y exp

W
y ,: () +d  v b

 (7.50)

Because P̃ will be normalized, we can safely ignore multiplication by factors that

are constant with respect to :y

P̃ensemble(=) y y | v ∝ 2
n

 

d∈{ }0 1, n

exp

W 
y,:() +d  v b


(7.51)

= exp


 1

2n



d∈{ }0 1, n

W
y,:() +d  v b


 (7.52)

= exp


1

2
W
y,:v + b


(7.53)

Substituting this back into Eq. 7.45 we obtain a softmax classifier with weights
1
2W .

The weight scaling rule is also exact in other settings, including regression
networks with conditionally normal outputs, and deep networks that have hidden
layers without nonlinearities. However, the weight scaling rule is only an approxi-
mation for deep models that have nonlinearities. Though the approximation has
not been theoretically characterized, it often works well, empirically. Goodfellow

et al. (2013a) found experimentally that the weight scaling approximation can work
better (in terms of classification accuracy) than Monte Carlo approximations to the
ensemble predictor. This held true even when the Monte Carlo approximation was
allowed to sample up to 1,000 sub-networks. Gal and Ghahramani (2015) found
that some models obtain better classification accuracy using twenty samples and

263

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

the Monte Carlo approximation. It appears that the optimal choice of inference
approximation is problem-dependent.

Srivastava (2014) showed that dropout is more effective than otheret al.
standard computationally inexpensive regularizers, such as weight decay, filter
norm constraints and sparse activity regularization. Dropout may also be combined
with other forms of regularization to yield a further improvement.

One advantage of dropout is that it is very computationally cheap. Using
dropout during training requires only O(n) computation per example per update,
to generate n random binary numbers and multiply them by the state. Depending
on the implementation, it may also require O(n) memory to store these binary

numbers until the back-propagation stage. Running inference in the trained model
has the same cost per-example as if dropout were not used, though we must pay

the cost of dividing the weights by 2 once before beginning to run inference on

examples.

One significant advantage of dropout is that it does not significantly limit the
type of model or training procedure that can be used. It works well with nearly any

model that uses a distributed representation and can be trained with stochastic
gradient descent. This includes feedforward neural networks, probabilistic models
such as restricted Boltzmann machines (Srivastava , 2014), and recurrentet al.

neural networks (Bayer and Osendorfer, 2014; Pascanu , 2014a). Many otheret al.
regularization strategies of comparable power impose more severe restrictions on
the architecture of the model.

Though the cost per-step of applying dropout to a specific model is negligible,
the cost of using dropout in a complete system can be significant. Because dropout
is a regularization technique, it reduces the effective capacity of a model. To offset
this effect, we must increase the size of the model. Typically the optimal validation
set error is much lower when using dropout, but this comes at the cost of a much
larger model and many more iterations of the training algorithm. For very large
datasets, regularization confers little reduction in generalization error. In these
cases, the computational cost of using dropout and larger models may outweigh
the benefit of regularization.

When extremely few labeled training examples are available, dropout is less
effective. Bayesian neural networks (Neal, 1996) outperform dropout on the
Alternative Splicing Dataset (Xiong , 2011) where fewer than 5,000 exampleset al.

are available (Srivastava , 2014). When additional unlabeled data is available,et al.
unsupervised feature learning can gain an advantage over dropout.

Wager (2013) showed that, when applied to linear regression, dropoutet al.
is equivalent to L2 weight decay, with a different weight decay coefficient for

264

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

each input feature. The magnitude of each feature’s weight decay coefficient is
determined by its variance. Similar results hold for other linear models. For deep
models, dropout is not equivalent to weight decay.

The stochasticity used while training with dropout is not necessary for the
approach’s success. It is just a means of approximating the sum over all sub-
models. Wang and Manning (2013) derived analytical approximations to this
marginalization. Their approximation, known as fast dropout resulted in faster
convergence time due to the reduced stochasticity in the computation of the
gradient. This method can also be applied at test time, as a more principled

(but also more computationally expensive) approximation to the average over all
sub-networks than the weight scaling approximation. Fast dropout has been used
to nearly match the performance of standard dropout on small neural network
problems, but has not yet yielded a significant improvement or been applied to a
large problem.

Just as stochasticity is not necessary to achieve the regularizing effect of
dropout, it is also not sufficient. To demonstrate this, Warde-Farley (2014)et al.
designed control experiments using a method called dropout boosting that they
designed to use exactly the same mask noise as traditional dropout but lack
its regularizing effect. Dropout boosting trains the entire ensemble to jointly
maximize the log-likelihood on the training set. In the same sense that traditional

dropout is analogous to bagging, this approach is analogous to boosting. As
intended, experiments with dropout boosting show almost no regularization effect
compared to training the entire network as a single model. This demonstrates that
the interpretation of dropout as bagging has value beyond the interpretation of
dropout as robustness to noise. The regularization effect of the bagged ensemble is
only achieved when the stochastically sampled ensemble members are trained to
perform well independently of each other.

Dropout has inspired other stochastic approaches to training exponentially
large ensembles of models that share weights. DropConnect is a special case of
dropout where each product between a single scalar weight and a single hidden
unit state is considered a unit that can be dropped (Wan , 2013). Stochasticet al.

pooling is a form of randomized pooling (see Sec. 9.3) for building ensembles
of convolutional networks with each convolutional network attending to different
spatial locations of each feature map. So far, dropout remains the most widely
used implicit ensemble method.

One of the key insights of dropout is that training a network with stochastic
behavior and making predictions by averaging over multiple stochastic decisions
implements a form of bagging with parameter sharing. Earlier, we described

265

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

dropout as bagging an ensemble of models formed by including or excluding
units. However, there is no need for this model averaging strategy to be based on
inclusion and exclusion. In principle, any kind of random modification is admissible.
In practice, we must choose modification families that neural networks are able
to learn to resist. Ideally, we should also use model families that allow a fast
approximate inference rule. We can think of any form of modification parametrized
by a vector µ as training an ensemble consisting of p(y ,| x µ) for all possible
values of µ. There is no requirement that µ have a finite number of values. For
example,µ can be real-valued. Srivastava (2014) showed that multiplying theet al.

weights by µ ∼ N(1, I) can outperform dropout based on binary masks. Because

E[µ] = 1 the standard network automatically implements approximate inference
in the ensemble, without needing any weight scaling.

So far we have described dropout purely as a means of performing efficient,
approximate bagging. However, there is another view of dropout that goes further
than this. Dropout trains not just a bagged ensemble of models, but an ensemble
of models that share hidden units. This means each hidden unit must be able to
perform well regardless of which other hidden units are in the model. Hidden units
must be prepared to be swapped and interchanged between models. Hinton et al.
(2012c) were inspired by an idea from biology: sexual reproduction, which involves
swapping genes between two different organisms, creates evolutionary pressure for

genes to become not just good, but to become readily swapped between different
organisms. Such genes and such features are very robust to changes in their
environment because they are not able to incorrectly adapt to unusual features
of any one organism or model. Dropout thus regularizes each hidden unit to be
not merely a good feature but a feature that is good in many contexts. Warde-
Farley (2014) compared dropout training to training of large ensembles andet al.

concluded that dropout offers additional improvements to generalization error

beyond those obtained by ensembles of independent models.

It is important to understand that a large portion of the power of dropout
arises from the fact that the masking noise is applied to the hidden units. This

can be seen as a form of highly intelligent, adaptive destruction of the information
content of the input rather than destruction of the raw values of the input. For

example, if the model learns a hidden unit h i that detects a face by finding the nose,
then dropping hi corresponds to erasing the information that there is a nose in

the image. The model must learn another hi , either that redundantly encodes the
presence of a nose, or that detects the face by another feature, such as the mouth.
Traditional noise injection techniques that add unstructured noise at the input are
not able to randomly erase the information about a nose from an image of a face
unless the magnitude of the noise is so great that nearly all of the information in

266

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

the image is removed. Destroying extracted features rather than original values
allows the destruction process to make use of all of the knowledge about the input
distribution that the model has acquired so far.

Another important aspect of dropout is that the noise is multiplicative. If the
noise were additive with fixed scale, then a rectified linear hidden unit h i with
added noise  could simply learn to have hi become very large in order to make
the added noise  insignificant by comparison. Multiplicative noise does not allow
such a pathological solution to the noise robustness problem.

Another deep learning algorithm, batch normalization, reparametrizes the
model in a way that introduces both additive and multiplicative noise on the

hidden units at training time. The primary purpose of batch normalization is to
improve optimization, but the noise can have a regularizing effect, and sometimes

makes dropout unnecessary. Batch normalization is described further in Sec. 8.7.1.

7.13 Adversarial Training

In many cases, neural networks have begun to reach human performance when

evaluated on an i.i.d. test set. It is natural therefore to wonder whether these
models have obtained a true human-level understanding of these tasks. In order

to probe the level of understanding a network has of the underlying task, we can
search for examples that the model misclassifies. Szegedy (2014b) found thatet al.
even neural networks that perform at human level accuracy have a nearly 100%
error rate on examples that are intentionally constructed by using an optimization
procedure to search for an input x near a data point x such that the model output
is very different at x. In many cases, x  can be so similar to x that a human
observer cannot tell the difference between the original example and the adversarial
example, but the network can make highly different predictions. See Fig. 7.8 for an
example.

Adversarial examples have many implications, for example, in computer security,

that are beyond the scope of this chapter. However, they are interesting in the

context of regularization because one can reduce the error rate on the original i.i.d.
test set via adversarial training—training on adversarially perturbed examples
from the training set (Szegedy , 2014b; Goodfellow , 2014b).et al. et al.

Goodfellow (2014b) showed that one of the primary causes of theseet al.

adversarial examples is excessive linearity. Neural networks are built out of

primarily linear building blocks. In some experiments the overall function they
implement proves to be highly linear as a result. These linear functions are easy

267

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

+ .007× =

x sign(∇xJ(θ x, , y))
x +

 sign(∇ xJ (θ x, , y))

y =“panda” “nematode” “gibbon”
w/ 57.7%
confidence

w/ 8.2%
confidence

w/ 99.3 %
confidence

Figure 7.8: A demonstration of adversarial example generation applied to GoogLeNet
(Szegedy , 2014a) on ImageNet. By adding an imperceptibly small vector whoseet al.
elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from Goodfellow (2014b).et al.

to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by  , then a linear function
with weights w can change by as much as || ||w 1, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly

sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function

family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point x that is not associated with a label in the dataset, the

model itself assigns some label ŷ. The model’s label ŷmay not be the true label,
but if the model is high quality, then ŷ has a high probability of providing the
true label. We can seek an adversarial example x that causes the classifier to
output a label y with y = ŷ. Adversarial examples generated using not the
true label but a label provided by a trained model are called virtual adversarial
examples (Miyato , 2015). The classifier may then be trained to assign theet al.
same label to x and x. This encourages the classifier to learn a function that is

268

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

robust to small changes anywhere along the manifold where the unlabeled data
lies. The assumption motivating this approach is that different classes usually lie
on disconnected manifolds, and a small perturbation should not be able to jump
from one class manifold to another class manifold.

7.14 Tangent Distance, Tangent Prop, and Manifold
Tangent Classifier

Many machine learning algorithms aim to overcome the curse of dimensionality
by assuming that the data lies near a low-dimensional manifold, as described in

Sec. 5.11.3.

One of the early attempts to take advantage of the manifold hypothesis is the
tangent distance et al.algorithm (Simard , 1993, 1998). It is a non-parametric

nearest-neighbor algorithm in which the metric used is not the generic Euclidean

distance but one that is derived from knowledge of the manifolds near which
probability concentrates. It is assumed that we are trying to classify examples and
that examples on the same manifold share the same category. Since the classifier
should be invariant to the local factors of variation that correspond to movement
on the manifold, it would make sense to use as nearest-neighbor distance between
points x1 and x 2 the distance between the manifoldsM1 and M2 to which they

respectively belong. Although that may be computationally difficult (it would
require solving an optimization problem, to find the nearest pair of points on M1

andM2), a cheap alternative that makes sense locally is to approximateMi by its
tangent plane at xi and measure the distance between the two tangents, or between
a tangent plane and a point. That can be achieved by solving a low-dimensional
linear system (in the dimension of the manifolds). Of course, this algorithm requires
one to specify the tangent vectors.

In a related spirit, the tangent prop et al.algorithm (Simard , 1992a) (Fig. 7.9)

trains a neural net classifier with an extra penalty to make each output f (x) of
the neural net locally invariant to known factors of variation. These factors of
variation correspond to movement along the manifold near which examples of the
same class concentrate. Local invariance is achieved by requiring ∇xf (x) to be

orthogonal to the known manifold tangent vectors v ()i at x, or equivalently that
the directional derivative of f at x in the directions v()i be small by adding a
regularization penalty :Ω

Ω() =f


i


(∇xf())x


v ()i
 2
. (7.54)

269

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

This regularizer can of course by scaled by an appropriate hyperparameter, and, for
most neural networks, we would need to sum over many outputs rather than the lone
output f(x) described here for simplicity. As with the tangent distance algorithm,
the tangent vectors are derived a priori, usually from the formal knowledge of
the effect of transformations such as translation, rotation, and scaling in images.
Tangent prop has been used not just for supervised learning (Simard , 1992a)et al.
but also in the context of reinforcement learning (Thrun, 1995).

Tangent propagation is closely related to dataset augmentation. In both
cases, the user of the algorithm encodes his or her prior knowledge of the task

by specifying a set of transformations that should not alter the output of the
network. The difference is that in the case of dataset augmentation, the network is
explicitly trained to correctly classify distinct inputs that were created by applying
more than an infinitesimal amount of these transformations. Tangent propagation
does not require explicitly visiting a new input point. Instead, it analytically
regularizes the model to resist perturbation in the directions corresponding to
the specified transformation. While this analytical approach is intellectually
elegant, it has two major drawbacks. First, it only regularizes the model to resist
infinitesimal perturbation. Explicit dataset augmentation confers resistance to
larger perturbations. Second, the infinitesimal approach poses difficulties for models
based on rectified linear units. These models can only shrink their derivatives

by turning units off or shrinking their weights. They are not able to shrink their
derivatives by saturating at a high value with large weights, as sigmoid or tanh
units can. Dataset augmentation works well with rectified linear units because
different subsets of rectified units can activate for different transformed versions of
each original input.

Tangent propagation is also related to double backprop (Drucker and LeCun,
1992) and adversarial training (Szegedy , 2014b; Goodfellow , 2014b).et al. et al.
Double backprop regularizes the Jacobian to be small, while adversarial training
finds inputs near the original inputs and trains the model to produce the same
output on these as on the original inputs. Tangent propagation and dataset

augmentation using manually specified transformations both require that the
model should be invariant to certain specified directions of change in the input.

Double backprop and adversarial training both require that the model should be
invariant to directions of change in the input so long as the change is small. Justall

as dataset augmentation is the non-infinitesimal version of tangent propagation,
adversarial training is the non-infinitesimal version of double backprop.

The manifold tangent classifier (Rifai , 2011c), eliminates the need toet al.
know the tangent vectors a priori. As we will see in Chapter 14, autoencoders can

270

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

x1

x
2

Normal Tangent

Figure 7.9: Illustration of the main idea of the tangent prop algorithm (Simard ,et al.
1992a) and manifold tangent classifier (Rifai , 2011c), which both regularize theet al.

classifier output function f(x). Each curve represents the manifold for a different class,
illustrated here as a one-dimensional manifold embedded in a two-dimensional space.
On one curve, we have chosen a single point and drawn a vector that is tangent to the
class manifold (parallel to and touching the manifold) and a vector that is normal to the
class manifold (orthogonal to the manifold). In multiple dimensions there may be many
tangent directions and many normal directions. We expect the classification function to
change rapidly as it moves in the direction normal to the manifold, and not to change as
it moves along the class manifold. Both tangent propagation and the manifold tangent
classifier regularize f(x) to not change very much as xmoves along the manifold. Tangent
propagation requires the user to manually specify functions that compute the tangent
directions (such as specifying that small translations of images remain in the same class
manifold) while the manifold tangent classifier estimates the manifold tangent directions
by training an autoencoder to fit the training data. The use of autoencoders to estimate
manifolds will be described in Chapter 14.

estimate the manifold tangent vectors. The manifold tangent classifier makes use
of this technique to avoid needing user-specified tangent vectors. As illustrated
in Fig. 14.10, these estimated tangent vectors go beyond the classical invariants

that arise out of the geometry of images (such as translation, rotation and scaling)
and include factors that must be learned because they are object-specific (such as
moving body parts). The algorithm proposed with the manifold tangent classifier
is therefore simple: (1) use an autoencoder to learn the manifold structure by
unsupervised learning, and (2) use these tangents to regularize a neural net classifier

as in tangent prop (Eq. 7.54).

This chapter has described most of the general strategies used to regularize

neural networks. Regularization is a central theme of machine learning and as such

271

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

will be revisited periodically by most of the remaining chapters. Another central
theme of machine learning is optimization, described next.

272

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the

validation set.

Let be the number of steps between evaluations.n
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let θo be the initial parameters.
θ θ← o

i ← 0
j ← 0
v ← ∞
θ∗ ← θ
i∗ ← i
while doj < p

Update by running the training algorithm for steps.θ n

i i n← +
v ← ValidationSetError()θ
if v < v then
j ← 0
θ∗ ← θ
i ∗ ← i
v v← 

else
j j← + 1

end if

end while
Best parameters are θ∗, best number of training steps is i∗

273

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

Algorithm 7.2 A meta-algorithm for using early stopping to determine how long
to train, then retraining on all the data.

Let X()train and y ()train be the training set.

Split X()train and y()train into (X ()subtrain , X (valid)) (and y()subtrain , y(valid))
respectively.
Run early stopping (Algorithm 7.1) starting from random θ usingX()subtrain

and y()subtrain for training data andX (valid)and y(valid) for validation data. This
returns i∗, the optimal number of steps.

Set to random values again.θ
Train on X()train and y()train for i∗ steps.

Algorithm 7.3 Meta-algorithm using early stopping to determine at what objec-
tive value we start to overfit, then continue training until that value is reached.

Let X()train and y ()train be the training set.
Split X()train and y()train into (X ()subtrain , X (valid)) (and y()subtrain , y(valid))
respectively.

Run early stopping (Algorithm 7.1) starting from random θ usingX()subtrain

and y()subtrain for training data andX (valid)and y(valid) for validation data. This
updates .θ

 J ,← (θ X()subtrain ,y()subtrain)
while J ,(θ X(valid),y (valid)) >  do

Train on X()train and y()train for steps.n

end while

274

