
Chapter 6

Deep Feedforward Networks

Deep feedforward networks feedforward neural networks, also often called , or multi-
layer perceptrons (MLPs), are the quintessential deep learning models. The goal
of a feedforward network is to approximate some function f∗. For example, for
a classifier, y = f ∗(x) maps an input x to a category y. A feedforward network

defines a mapping y= f (x; θ) and learns the value of the parameters θ that result
in the best function approximation.

These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural
networks, presented in Chapter 10.

Feedforward networks are of extreme importance to machine learning practi-
tioners. They form the basis of many important commercial applications. For
example, the convolutional networks used for object recognition from photos are a

specialized kind of feedforward network. Feedforward networks are a conceptual
stepping stone on the path to recurrent networks, which power many natural
language applications.

Feedforward neural networks are called because they are typically rep-networks
resented by composing together many different functions. The model is associated
with a directed acyclic graph describing how the functions are composed together.
For example, we might have three functions f(1), f(2), and f (3) connected in a
chain, to form f(x) = f(3) (f (2)(f(1)(x))). These chain structures are the most
commonly used structures of neural networks. In this case, f(1) is called the first
layer of the network, f (2) is called the second layer, and so on. The overall length

168

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

of the chain gives the of the model. It is from this terminology that thedepth
name “deep learning” arises. The final layer of a feedforward network is called the
output layer. During neural network training, we drive f(x) to match f ∗(x). The
training data provides us with noisy, approximate examples of f ∗(x) evaluated at
different training points. Each example x is accompanied by a label y f≈ ∗(x).
The training examples specify directly what the output layer must do at each point
x; it must produce a value that is close to y. The behavior of the other layers is
not directly specified by the training data. The learning algorithm must decide
how to use those layers to produce the desired output, but the training data does

not say what each individual layer should do. Instead, the learning algorithm must
decide how to use these layers to best implement an approximation of f ∗. Because
the training data does not show the desired output for each of these layers, these
layers are called .hidden layers

Finally, these networks are called neural because they are loosely inspired by
neuroscience. Each hidden layer of the network is typically vector-valued. The
dimensionality of these hidden layers determines the of the model. Eachwidth
element of the vector may be interpreted as playing a role analogous to a neuron.
Rather than thinking of the layer as representing a single vector-to-vector function,
we can also think of the layer as consisting of many that act in parallel,units
each representing a vector-to-scalar function. Each unit resembles a neuron in

the sense that it receives input from many other units and computes its own
activation value. The idea of using many layers of vector-valued representation
is drawn from neuroscience. The choice of the functions f ()i (x) used to compute
these representations is also loosely guided by neuroscientific observations about
the functions that biological neurons compute. However, modern neural network
research is guided by many mathematical and engineering disciplines, and the
goal of neural networks is not to perfectly model the brain. It is best to think of
feedforward networks as function approximation machines that are designed to
achieve statistical generalization, occasionally drawing some insights from what we
know about the brain, rather than as models of brain function.

One way to understand feedforward networks is to begin with linear models

and consider how to overcome their limitations. Linear models, such as logistic
regression and linear regression, are appealing because they may be fit efficiently
and reliably, either in closed form or with convex optimization. Linear models also
have the obvious defect that the model capacity is limited to linear functions, so
the model cannot understand the interaction between any two input variables.

To extend linear models to represent nonlinear functions of x, we can apply
the linear model not to x itself but to a transformed input φ(x), where φ is a

169

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

nonlinear transformation. Equivalently, we can apply the kernel trick described in
Sec. 5.7.2, to obtain a nonlinear learning algorithm based on implicitly applying
the φ mapping. We can think of φ as providing a set of features describing x, or
as providing a new representation for .x

The question is then how to choose the mapping .φ

1. One option is to use a very generic φ, such as the infinite-dimensional φ that
is implicitly used by kernel machines based on the RBF kernel. If φ(x) is
of high enough dimension, we can always have enough capacity to fit the
training set, but generalization to the test set often remains poor. Very
generic feature mappings are usually based only on the principle of local
smoothness and do not encode enough prior information to solve advanced
problems.

2. Another option is to manually engineerφ. Until the advent of deep learning,
this was the dominant approach. This approach requires decades of human
effort for each separate task, with practitioners specializing in different
domains such as speech recognition or computer vision, and with little

transfer between domains.

3. The strategy of deep learning is to learnφ. In this approach, we have a model
y = f(x;θ w,) = φ(x; θ)w. We now have parameters θ that we use to learn

φ from a broad class of functions, and parameters w that map from φ(x) to
the desired output. This is an example of a deep feedforward network, with
φ defining a hidden layer. This approach is the only one of the three that
gives up on the convexity of the training problem, but the benefits outweigh
the harms. In this approach, we parametrize the representation as φ(x ;θ)
and use the optimization algorithm to find theθ that corresponds to a good
representation. If we wish, this approach can capture the benefit of the first
approach by being highly generic—we do so by using a very broad family
φ(x;θ). This approach can also capture the benefit of the second approach.
Human practitioners can encode their knowledge to help generalization by
designing familiesφ(x;θ) that they expect will perform well. The advantage

is that the human designer only needs to find the right general function
family rather than finding precisely the right function.

This general principle of improving models by learning features extends beyond
the feedforward networks described in this chapter. It is a recurring theme of deep
learning that applies to all of the kinds of models described throughout this book.
Feedforward networks are the application of this principle to learning deterministic

170

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

mappings from x toy that lack feedback connections. Other models presented
later will apply these principles to learning stochastic mappings, learning functions
with feedback, and learning probability distributions over a single vector.

We begin this chapter with a simple example of a feedforward network. Next,
we address each of the design decisions needed to deploy a feedforward network.
First, training a feedforward network requires making many of the same design-
decisions as are necessary for a linear model: choosing the optimizer, the cost
function, and the form of the output units. We review these basics of gradient-based
learning, then proceed to confront some of the design decisions that are unique

to feedforward networks. Feedforward networks have introduced the concept of a
hidden layer, and this requires us to choose the that will beactivation functions
used to compute the hidden layer values. We must also design the architecture of
the network, including how many layers the network should contain, how these
networks should be connected to each other, and how many units should be in
each layer. Learning in deep neural networks requires computing the gradients of
complicated functions. We present the back-propagation algorithm and its modern
generalizations, which can be used to efficiently compute these gradients. Finally,
we close with some historical perspective.

6.1 Example: Learning XOR

To make the idea of a feedforward network more concrete, we begin with an
example of a fully functioning feedforward network on a very simple task: learning
the XOR function.

The XOR function (“exclusive or”) is an operation on two binary values, x1
and x 2. When exactly one of these binary values is equal to , the XOR function1
returns . Otherwise, it returns 0. The XOR function provides the target function1
y = f∗(x) that we want to learn. Our model provides a function y = f(x; θ) and
our learning algorithm will adapt the parameters θ to make f as similar as possible
to f∗ .

In this simple example, we will not be concerned with statistical generalization.

We want our network to perform correctly on the four points X = {[0,0], [0 , 1] ,
[1,0], and [1, 1] }. We will train the network on all four of these points. The
only challenge is to fit the training set.

We can treat this problem as a regression problem and use a mean squared error
loss function. We choose this loss function to simplify the math for this example
as much as possible. We will see later that there are other, more appropriate

171

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

approaches for modeling binary data.

Evaluated on our whole training set, the MSE loss function is

J() =θ
1

4

x∈X
(f∗ () (;))x − f x θ 2 . (6.1)

Now we must choose the form of our model, f(x;θ). Suppose that we choose
a linear model, with consisting of and . Our model is defined to beθ w b

f , b(;x w) = xw + b. (6.2)

We can minimize J(θ) in closed form with respect to w and b using the normal
equations.

After solving the normal equations, we obtain w = 0 and b= 1
2. The linear

model simply outputs 0.5 everywhere. Why does this happen? Fig. 6.1 shows how
a linear model is not able to represent the XOR function. One way to solve this
problem is to use a model that learns a different feature space in which a linear
model is able to represent the solution.

Specifically, we will introduce a very simple feedforward network with one
hidden layer containing two hidden units. See Fig. 6.2 for an illustration of
this model. This feedforward network has a vector of hidden units h that are
computed by a function f(1)(x;W c,). The values of these hidden units are then
used as the input for a second layer. The second layer is the output layer of the
network. The output layer is still just a linear regression model, but now it is
applied to h rather than to x. The network now contains two functions chained
together: h= f(1)(x; W c,) and y= f (2)(h;w, b), with the complete model being
f , , , b f(;x W c w) = (2)(f (1) ())x .

What function should f (1) compute? Linear models have served us well so far,
and it may be tempting to make f(1) be linear as well. Unfortunately, if f(1) were

linear, then the feedforward network as a whole would remain a linear function of
its input. Ignoring the intercept terms for the moment, suppose f (1)(x) =W x
and f(2)(h) = hw. Then f(x) = wWx . We could represent this function as
f() = x xw where w = Ww.

Clearly, we must use a nonlinear function to describe the features. Most neural
networks do so using an affine transformation controlled by learned parameters,
followed by a fixed, nonlinear function called an activation function. We use that
strategy here, by defining h = g(W x +c),where W provides the weights of a
linear transformation and c the biases. Previously, to describe a linear regression
model, we used a vector of weights and a scalar bias parameter to describe an

172

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original Spacex

0 1

h1

0

1

h
2

Learned Spaceh

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w 2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. In the transformed space(Right)
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output have been1
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0] and x= [0, 1] to a single point in feature space,h = [1,0].
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

173

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the
graph. This style is very explicit and unambiguous but for networks larger than this
example it can consume too much space. In this style, we draw a node in the(Right)
graph for each entire vector representing a layer’s activations. This style is much more
compact. Sometimes we annotate the edges in this graph with the name of the parameters
that describe the relationship between two layers. Here, we indicate that a matrix W
describes the mapping from x to h, and a vector w describes the mapping from h to y.
We typically omit the intercept parameters associated with each layer when labeling this
kind of drawing.

affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied elementwise, with hi = g(x W:,i +ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot , 2011a) defined by the activationet al.
function depicted in Fig. 6.3.g z , z() = max 0{ }

We can now specify our complete network as

f , , , b(;x W c w) = w max 0{ ,Wx c+ } + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =

1 1

1 1

, (6.4)

c =

0

−1

, (6.5)

w =

1

−2

, (6.6)

174

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0

z

0

g
z

,
z

(
)
=
m
a
x
0{

}

The Rectified Linear Activation Function

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.

175

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

and .b = 0

We can now walk through the way that the model processes a batch of inputs.
LetX be the design matrix containing all four points in the binary input space,
with one example per row:

X =

0 0

0 1
1 0
1 1

 . (6.7)

The first step in the neural network is to multiply the input matrix by the first

layer’s weight matrix:

XW =

0 0
1 1
1 1
2 2

 . (6.8)

Next, we add the bias vector , to obtainc

0 1−
1 0

1 0
2 1

. (6.9)

In this space, all of the examples lie along a line with slope . As we move along1

this line, the output needs to begin at , then rise to , then drop back down to .0 1 0
A linear model cannot implement such a function. To finish computing the value
of for each example, we apply the rectified linear transformation:h

0 0
1 0
1 0

2 1

 . (6.10)

This transformation has changed the relationship between the examples. They no
longer lie on a single line. As shown in Fig. 6.1, they now lie in a space where a
linear model can solve the problem.

We finish by multiplying by the weight vector :w

0
1

1
0

 . (6.11)

176

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

The neural network has obtained the correct answer for every example in the batch.

In this example, we simply specified the solution, then showed that it obtained
zero error. In a real situation, there might be billions of model parameters and
billions of training examples, so one cannot simply guess the solution as we did
here. Instead, a gradient-based optimization algorithm can find parameters that
produce very little error. The solution we described to the XOR problem is at a
global minimum of the loss function, so gradient descent could converge to this
point. There are other equivalent solutions to the XOR problem that gradient
descent could also find. The convergence point of gradient descent depends on the

initial values of the parameters. In practice, gradient descent would usually not
find clean, easily understood, integer-valued solutions like the one we presented
here.

6.2 Gradient-Based Learning

Designing and training a neural network is not much different from training any

other machine learning model with gradient descent. In Sec. 5.10, we described
how to build a machine learning algorithm by specifying an optimization procedure,
a cost function, and a model family.

The largest difference between the linear models we have seen so far and neural
networks is that the nonlinearity of a neural network causes most interesting loss
functions to become non-convex. This means that neural networks are usually
trained by using iterative, gradient-based optimizers that merely drive the cost
function to a very low value, rather than the linear equation solvers used to train
linear regression models or the convex optimization algorithms with global conver-
gence guarantees used to train logistic regression or SVMs. Convex optimization
converges starting from any initial parameters (in theory—in practice it is very
robust but can encounter numerical problems). Stochastic gradient descent applied
to non-convex loss functions has no such convergence guarantee, and is sensitive
to the values of the initial parameters. For feedforward neural networks, it is
important to initialize all weights to small random values. The biases may be
initialized to zero or to small positive values. The iterative gradient-based opti-
mization algorithms used to train feedforward networks and almost all other deep

models will be described in detail in Chapter 8, with parameter initialization in
particular discussed in Sec. 8.4. For the moment, it suffices to understand that
the training algorithm is almost always based on using the gradient to descend the
cost function in one way or another. The specific algorithms are improvements
and refinements on the ideas of gradient descent, introduced in Sec. 4.3, and,

177

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

more specifically, are most often improvements of the stochastic gradient descent
algorithm, introduced in Sec. 5.9.

We can of course, train models such as linear regression and support vector
machines with gradient descent too, and in fact this is common when the training
set is extremely large. From this point of view, training a neural network is not
much different from training any other model. Computing the gradient is slightly
more complicated for a neural network, but can still be done efficiently and exactly.
Sec. 6.5 will describe how to obtain the gradient using the back-propagation
algorithm and modern generalizations of the back-propagation algorithm.

As with other machine learning models, to apply gradient-based learning we
must choose a cost function, and we must choose how to represent the output of
the model. We now revisit these design considerations with special emphasis on
the neural networks scenario.

6.2.1 Cost Functions

An important aspect of the design of a deep neural network is the choice of the

cost function. Fortunately, the cost functions for neural networks are more or less
the same as those for other parametric models, such as linear models.

In most cases, our parametric model defines a distribution p(y x| ;θ) and
we simply use the principle of maximum likelihood. This means we use the
cross-entropy between the training data and the model’s predictions as the cost
function.

Sometimes, we take a simpler approach, where rather than predicting a complete
probability distribution over y , we merely predict some statistic of y conditioned
on . Specialized loss functions allow us to train a predictor of these estimates.x

The total cost function used to train a neural network will often combine one
of the primary cost functions described here with a regularization term. We have

already seen some simple examples of regularization applied to linear models in Sec.
5.2.2. The weight decay approach used for linear models is also directly applicable
to deep neural networks and is among the most popular regularization strategies.
More advanced regularization strategies for neural networks will be described in

Chapter 7.

6.2.1.1 Learning Conditional Distributions with Maximum Likelihood

Most modern neural networks are trained using maximum likelihood. This means

that the cost function is simply the negative log-likelihood, equivalently described

178

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

as the cross-entropy between the training data and the model distribution. This
cost function is given by

J() = θ −Ex y, ∼p̂data log pmodel ()y x| . (6.12)

The specific form of the cost function changes from model to model, depending
on the specific form of log pmodel. The expansion of the above equation typically
yields some terms that do not depend on the model parameters and may be
discarded. For example, as we saw in Sec. 5.5.1, if pmodel (y x|) = N (y ;f (x;θ), I),
then we recover the mean squared error cost,

J θ() =
1

2
Ex y, ∼p̂data || − ||y f(;)x θ 2+ const, (6.13)

up to a scaling factor of 12 and a term that does not depend on . The discardedθ
constant is based on the variance of the Gaussian distribution, which in this case

we chose not to parametrize. Previously, we saw that the equivalence between
maximum likelihood estimation with an output distribution and minimization of
mean squared error holds for a linear model, but in fact, the equivalence holds
regardless of the used to predict the mean of the Gaussian.f(;)x θ

An advantage of this approach of deriving the cost function from maximum
likelihood is that it removes the burden of designing cost functions for each model.
Specifying a model p (y x|) automatically determines a cost function log p(y x|).

One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good guide
for the learning algorithm. Functions that saturate (become very flat) undermine
this objective because they make the gradient become very small. In many cases
this happens because the activation functions used to produce the output of the
hidden units or the output units saturate. The negative log-likelihood helps to
avoid this problem for many models. Many output units involve an exp function
that can saturate when its argument is very negative. The log function in the
negative log-likelihood cost function undoes the exp of some output units. We will
discuss the interaction between the cost function and the choice of output unit in

Sec. 6.2.2.

6.2.1.2 Learning Conditional Statistics

Instead of learning a full probability distribution p(y x| ;θ) we often want to learn
just one conditional statistic of given .y x

179

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

For example, we may have a predictor f (x; θ) that we wish to predict the mean
of .y

If we use a sufficiently powerful neural network, we can think of the neural
network as being able to represent any function f from a wide class of functions,
with this class being limited only by features such as continuity and boundedness
rather than by having a specific parametric form. From this point of view, we
can view the cost function as being a rather than just a function. Afunctional
functional is a mapping from functions to real numbers. We can thus think of
learning as choosing a function rather than merely choosing a set of parameters.

We can design our cost functional to have its minimum occur at some specific
function we desire. For example, we can design the cost functional to have its
minimum lie on the function that maps x to the expected value of y given x.
Solving an optimization problem with respect to a function requires a mathematical
tool called calculus of variations, described in Sec. 19.4.2. It is not necessary to
understand calculus of variations to understand the content of this chapter. At
the moment, it is only necessary to understand that calculus of variations may be
used to derive the following two results.

Our first result derived using calculus of variations is that solving the optimiza-
tion problem

f ∗ = arg min
f

Ex y, ∼pdata || − ||y f()x 2 (6.14)

yields
f ∗() = x Ey∼pdata()y x| []y , (6.15)

so long as this function lies within the class we optimize over. In other words, if we

could train on infinitely many samples from the true data-generating distribution,

minimizing the mean squared error cost function gives a function that predicts the
mean of for each value of .y x

Different cost functions give different statistics. A second result derived using
calculus of variations is that

f ∗ = arg min
f

Ex y, ∼pdata || − ||y f()x 1 (6.16)

yields a function that predicts the median value of y for each x, so long as such a
function may be described by the family of functions we optimize over. This cost
function is commonly called mean absolute error.

Unfortunately, mean squared error and mean absolute error often lead to poor
results when used with gradient-based optimization. Some output units that

saturate produce very small gradients when combined with these cost functions.

180

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

This is one reason that the cross-entropy cost function is more popular than mean
squared error or mean absolute error, even when it is not necessary to estimate an
entire distribution .p()y x|

6.2.2 Output Units

The choice of cost function is tightly coupled with the choice of output unit. Most
of the time, we simply use the cross-entropy between the data distribution and the

model distribution. The choice of how to represent the output then determines
the form of the cross-entropy function.

Any kind of neural network unit that may be used as an output can also be
used as a hidden unit. Here, we focus on the use of these units as outputs of the

model, but in principle they can be used internally as well. We revisit these units
with additional detail about their use as hidden units in Sec. 6.3.

Throughout this section, we suppose that the feedforward network provides a
set of hidden features defined by h= f(x; θ). The role of the output layer is then
to provide some additional transformation from the features to complete the task

that the network must perform.

6.2.2.1 Linear Units for Gaussian Output Distributions

One simple kind of output unit is an output unit based on an affine transformation
with no nonlinearity. These are often just called linear units.

Given features h, a layer of linear output units produces a vector ŷ =Wh+ b.

Linear output layers are often used to produce the mean of a conditional
Gaussian distribution:

p() = (;y x| N y ŷ I,). (6.17)

Maximizing the log-likelihood is then equivalent to minimizing the mean squared

error.

The maximum likelihood framework makes it straightforward to learn the

covariance of the Gaussian too, or to make the covariance of the Gaussian be a
function of the input. However, the covariance must be constrained to be a positive
definite matrix for all inputs. It is difficult to satisfy such constraints with a linear
output layer, so typically other output units are used to parametrize the covariance.

Approaches to modeling the covariance are described shortly, in Sec. 6.2.2.4.

Because linear units do not saturate, they pose little difficulty for gradient-
based optimization algorithms and may be used with a wide variety of optimization

181

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

algorithms.

6.2.2.2 Sigmoid Units for Bernoulli Output Distributions

Many tasks require predicting the value of a binary variable y . Classification
problems with two classes can be cast in this form.

The maximum-likelihood approach is to define a Bernoulli distribution over y
conditioned on .x

A Bernoulli distribution is defined by just a single number. The neural net
needs to predict only P (y= 1 | x). For this number to be a valid probability, it
must lie in the interval [0, 1].

Satisfying this constraint requires some careful design effort. Suppose we were
to use a linear unit, and threshold its value to obtain a valid probability:

P y(= 1) = max| x

0 min,

1,wh + b

. (6.18)

This would indeed define a valid conditional distribution, but we would not be able
to train it very effectively with gradient descent. Any time that wh + b strayed
outside the unit interval, the gradient of the output of the model with respect to
its parameters would be 0 . A gradient of 0 is typically problematic because the

learning algorithm no longer has a guide for how to improve the corresponding
parameters.

Instead, it is better to use a different approach that ensures there is always a
strong gradient whenever the model has the wrong answer. This approach is based
on using sigmoid output units combined with maximum likelihood.

A sigmoid output unit is defined by

ŷ σ=

wh + b

(6.19)

where is the logistic sigmoid function described in Sec. 3.10.σ

We can think of the sigmoid output unit as having two components. First, it
uses a linear layer to compute z = wh +b. Next, it uses the sigmoid activation
function to convert into a probability.z

We omit the dependence on x for the moment to discuss how to define a
probability distribution over y using the value z. The sigmoid can be motivated
by constructing an unnormalized probability distribution P̃(y), which does not
sum to 1. We can then divide by an appropriate constant to obtain a valid
probability distribution. If we begin with the assumption that the unnormalized log

182

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

probabilities are linear in y and z, we can exponentiate to obtain the unnormalized
probabilities. We then normalize to see that this yields a Bernoulli distribution
controlled by a sigmoidal transformation of :z

log P̃ y yz() = (6.20)

P̃ y yz() = exp() (6.21)

P y() =
exp()yz

1
y=0exp(y z)

(6.22)

P y σ() = ((2y z .− 1)) (6.23)

Probability distributions based on exponentiation and normalization are common
throughout the statistical modeling literature. The z variable defining such a

distribution over binary variables is called a logit.

This approach to predicting the probabilities in log-space is natural to use
with maximum likelihood learning. Because the cost function used with maximum
likelihood is − log P(y | x), the log in the cost function undoes the exp of the
sigmoid. Without this effect, the saturation of the sigmoid could prevent gradient-

based learning from making good progress. The loss function for maximum
likelihood learning of a Bernoulli parametrized by a sigmoid is

J P y() = logθ − (| x) (6.24)

= log ((2 1))− σ y − z (6.25)

= ((1 2))ζ − y z . (6.26)

This derivation makes use of some properties from Sec. 3.10. By rewriting
the loss in terms of the softplus function, we can see that it saturates only when
(1 − 2y)z is very negative. Saturation thus occurs only when the model already
has the right answer—when y = 1 and z is very positive, or y = 0 and z is very
negative. When z has the wrong sign, the argument to the softplus function,

(1− 2y)z, may be simplified to | |z . As | |z becomes large while z has the wrong sign,
the softplus function asymptotes toward simply returning its argument | |z . The
derivative with respect to z asymptotes to sign(z), so, in the limit of extremely

incorrect z, the softplus function does not shrink the gradient at all. This property
is very useful because it means that gradient-based learning can act to quickly
correct a mistaken .z

When we use other loss functions, such as mean squared error, the loss can
saturate anytime σ(z) saturates. The sigmoid activation function saturates to 0
when z becomes very negative and saturates to when1 z becomes very positive.

183

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

The gradient can shrink too small to be useful for learning whenever this happens,
whether the model has the correct answer or the incorrect answer. For this reason,
maximum likelihood is almost always the preferred approach to training sigmoid
output units.

Analytically, the logarithm of the sigmoid is always defined and finite, because
the sigmoid returns values restricted to the open interval (0,1), rather than using
the entire closed interval of valid probabilities [0, 1]. In software implementations,
to avoid numerical problems, it is best to write the negative log-likelihood as a
function of z, rather than as a function of ŷ = σ(z). If the sigmoid function

underflows to zero, then taking the logarithm of ŷ yields negative infinity.

6.2.2.3 Softmax Units for Multinoulli Output Distributions

Any time we wish to represent a probability distribution over a discrete variable

with n possible values, we may use the softmax function. This can be seen as a
generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.

Softmax functions are most often used as the output of a classifier, to represent
the probability distribution over n different classes. More rarely, softmax functions
can be used inside the model itself, if we wish the model to choose between one of
n different options for some internal variable.

In the case of binary variables, we wished to produce a single number

ŷ P y .= (= 1)| x (6.27)

Because this number needed to lie between and , and because we wanted the0 1

logarithm of the number to be well-behaved for gradient-based optimization of

the log-likelihood, we chose to instead predict a number z = log P̃ (y = 1 | x).
Exponentiating and normalizing gave us a Bernoulli distribution controlled by the
sigmoid function.

To generalize to the case of a discrete variable with n values, we now need

to produce a vector ŷ, with ŷ i = P (y = i | x). We require not only that each

element of ŷi be between and , but also that the entire vector sums to so that0 1 1

it represents a valid probability distribution. The same approach that worked for
the Bernoulli distribution generalizes to the multinoulli distribution. First, a linear
layer predicts unnormalized log probabilities:

z W= h b+ , (6.28)

184

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

where z i = log P̃ (y = i | x). The softmax function can then exponentiate and
normalize to obtain the desiredz ŷ. Formally, the softmax function is given by

softmax()z i =
exp(zi)
j exp(zj)

. (6.29)

As with the logistic sigmoid, the use of the exp function works very well when
training the softmax to output a target value y using maximum log-likelihood. In
this case, we wish to maximize logP(y = i ;z) = log softmax(z) i. Defining the
softmax in terms of exp is natural because the log in the log-likelihood can undo
the of the softmax:exp

log softmax()z i = zi− log

j

exp(zj). (6.30)

The first term of Eq. 6.30 shows that the input zi always has a direct con-
tribution to the cost function. Because this term cannot saturate, we know that
learning can proceed, even if the contribution of zi to the second term of Eq. 6.30

becomes very small. When maximizing the log-likehood, the first term encourages
zi to be pushed up, while the second term encourages all of z to be pushed down.
To gain some intuition for the second term, log

j exp(zj), observe that this term

can be roughly approximated by maxj z j. This approximation is based on the idea
that exp(zk) is insignificant for anyzk that is noticeably less than max j zj. The
intuition we can gain from this approximation is that the negative log-likelihood
cost function always strongly penalizes the most active incorrect prediction. If the
correct answer already has the largest input to the softmax, then the −zi term
and the log

jexp(zj) ≈ max j zj =z i terms will roughly cancel. This example

will then contribute little to the overall training cost, which will be dominated by
other examples that are not yet correctly classified.

So far we have discussed only a single example. Overall, unregularized maximum

likelihood will drive the model to learn parameters that drive the softmax to predict
the fraction of counts of each outcome observed in the training set:

softmax((;))z x θ i ≈
m
j=1 1y()j =i,x()j =xm
j=1 1x()j =x

. (6.31)

Because maximum likelihood is a consistent estimator, this is guaranteed to happen
so long as the model family is capable of representing the training distribution. In
practice, limited model capacity and imperfect optimization will mean that the

model is only able to approximate these fractions.

185

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Many objective functions other than the log-likelihood do not work as well
with the softmax function. Specifically, objective functions that do not use a log to
undo the exp of the softmax fail to learn when the argument to the exp becomes
very negative, causing the gradient to vanish. In particular, squared error is a
poor loss function for softmax units, and can fail to train the model to change its
output, even when the model makes highly confident incorrect predictions (Bridle,
1990). To understand why these other loss functions can fail, we need to examine
the softmax function itself.

Like the sigmoid, the softmax activation can saturate. The sigmoid function has

a single output that saturates when its input is extremely negative or extremely
positive. In the case of the softmax, there are multiple output values. These
output values can saturate when the differences between input values become
extreme. When the softmax saturates, many cost functions based on the softmax
also saturate, unless they are able to invert the saturating activating function.

To see that the softmax function responds to the difference between its inputs,
observe that the softmax output is invariant to adding the same scalar to all of its
inputs:

softmax() = softmax(+)z z c . (6.32)

Using this property, we can derive a numerically stable variant of the softmax:

softmax() = softmax(maxz z −
i
zi). (6.33)

The reformulated version allows us to evaluate softmax with only small numerical
errors even when z contains extremely large or extremely negative numbers. Ex-
amining the numerically stable variant, we see that the softmax function is driven
by the amount that its arguments deviate from maxi zi.

An output softmax(z)i saturates to when the corresponding input is maximal1
(zi = maxizi) and zi is much greater than all of the other inputs. The output

softmax(z)i can also saturate to when0 zi is not maximal and the maximum is
much greater. This is a generalization of the way that sigmoid units saturate, and
can cause similar difficulties for learning if the loss function is not designed to

compensate for it.

The argument z to the softmax function can be produced in two different ways.
The most common is simply to have an earlier layer of the neural network output
every element of z, as described above using the linear layer z = W h+ b . While

straightforward, this approach actually over-parametrizes the distribution. The
constraint that the n outputs must sum to means that only1 n− 1 parameters are
necessary; the probability of the n -th value may be obtained by subtracting the

186

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

first n−1 1probabilities from . We can thus impose a requirement that one element
of z be fixed. For example, we can require that zn = 0. Indeed, this is exactly
what the sigmoid unit does. Defining P (y = 1 | x) = σ(z) is equivalent to defining
P (y= 1 | x) = softmax(z)1 with a two-dimensional z and z1 = 0. Both the n −1
argument and the n argument approaches to the softmax can describe the same
set of probability distributions, but have different learning dynamics. In practice,
there is rarely much difference between using the overparametrized version or the
restricted version, and it is simpler to implement the overparametrized version.

From a neuroscientific point of view, it is interesting to think of the softmax as

a way to create a form of competition between the units that participate in it: the
softmax outputs always sum to 1 so an increase in the value of one unit necessarily
corresponds to a decrease in the value of others. This is analogous to the lateral
inhibition that is believed to exist between nearby neurons in the cortex. At the
extreme (when the difference between the maximal ai and the others is large in
magnitude) it becomes a form of (one of the outputs is nearly 1winner-take-all
and the others are nearly 0).

6.2.2.4 Other Output Types

The linear, sigmoid, and softmax output units described above are the most
common. Neural networks can generalize to almost any kind of output layer that
we wish. The principle of maximum likelihood provides a guide for how to design
a good cost function for nearly any kind of output layer.

In general, if we define a conditional distribution p(y x| ; θ), the principle of
maximum likelihood suggests we use as our cost function.− |log (p y x θ;)

In general, we can think of the neural network as representing a function f(x; θ).

The outputs of this function are not direct predictions of the value y. Instead,
f (x;θ) = ω provides the parameters for a distribution over y. Our loss function
can then be interpreted as .− log (; ())p y ω x

For example, we may wish to learn the variance of a conditional Gaussian for
y , given x. In the simple case, where the variance σ2 is a constant, there is a
closed form expression because the maximum likelihood estimator of variance is

simply the empirical mean of the squared difference between observations y and
their expected value. A computationally more expensive approach that does not
require writing special-case code is to simply include the variance as one of the
properties of the distribution p (y | x) that is controlled by ω = f (x ;θ). The
negative log-likelihood − log p (y; ω(x)) will then provide a cost function with the

appropriate terms necessary to make our optimization procedure incrementally

187

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

learn the variance. In the simple case where the standard deviation does not depend
on the input, we can make a new parameter in the network that is copied directly
into ω. This new parameter might be σ itself or could be a parameter v representing
σ2 or it could be a parameterβ representing 1

σ2, depending on how we choose to
parametrize the distribution. We may wish our model to predict a different amount
of variance in y for different values of x. This is called a heteroscedastic model.
In the heteroscedastic case, we simply make the specification of the variance be
one of the values output by f (x;θ). A typical way to do this is to formulate the
Gaussian distribution using precision, rather than variance, as described in Eq.

3.22. In the multivariate case it is most common to use a diagonal precision matrix

diag (6.34)()β .

This formulation works well with gradient descent because the formula for the
log-likelihood of the Gaussian distribution parametrized by β involves only mul-
tiplication by βi and addition of logβi . The gradient of multiplication, addition,
and logarithm operations is well-behaved. By comparison, if we parametrized the
output in terms of variance, we would need to use division. The division function

becomes arbitrarily steep near zero. While large gradients can help learning,
arbitrarily large gradients usually result in instability. If we parametrized the
output in terms of standard deviation, the log-likelihood would still involve division,
and would also involve squaring. The gradient through the squaring operation
can vanish near zero, making it difficult to learn parameters that are squared.
Regardless of whether we use standard deviation, variance, or precision, we must
ensure that the covariance matrix of the Gaussian is positive definite. Because
the eigenvalues of the precision matrix are the reciprocals of the eigenvalues of
the covariance matrix, this is equivalent to ensuring that the precision matrix is

positive definite. If we use a diagonal matrix, or a scalar times the diagonal matrix,
then the only condition we need to enforce on the output of the model is positivity.
If we suppose that a is the raw activation of the model used to determine the

diagonal precision, we can use the softplus function to obtain a positive precision
vector: β = ζ(a) . This same strategy applies equally if using variance or standard
deviation rather than precision or if using a scalar times identity rather than
diagonal matrix.

It is rare to learn a covariance or precision matrix with richer structure than
diagonal. If the covariance is full and conditional, then a parametrization must
be chosen that guarantees positive-definiteness of the predicted covariance matrix.
This can be achieved by writing Σ() = ()x B x B()x , whereB is an unconstrained
square matrix. One practical issue if the matrix is full rank is that computing the
likelihood is expensive, with a d d× matrix requiring O(d3) computation for the

188

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

determinant and inverse of Σ(x) (or equivalently, and more commonly done, its
eigendecomposition or that of).B x()

We often want to perform multimodal regression, that is, to predict real values
that come from a conditional distribution p(y x|) that can have several different
peaks in y space for the same value of x. In this case, a Gaussian mixture is
a natural representation for the output (Jacobs , 1991; Bishop, 1994).et al.
Neural networks with Gaussian mixtures as their output are often called mixture
density networks. A Gaussian mixture output with n components is defined by the
conditional probability distribution

p() =y x|
n

i=1

p i(= c | Nx) (y µ; ()i ()x ,Σ()i ())x . (6.35)

The neural network must have three outputs: a vector defining p(c = i | x), a
matrix providing µ()i (x) for all i, and a tensor providing Σ ()i (x) for all i. These
outputs must satisfy different constraints:

1. Mixture components p(c = i | x): these form a multinoulli distribution
over the n different components associated with latent variable1 c, and can
typically be obtained by a softmax over an n-dimensional vector, to guarantee
that these outputs are positive and sum to 1.

2. Means µ()i (x): these indicate the center or mean associated with the i-th
Gaussian component, and are unconstrained (typically with no nonlinearity

at all for these output units). If y is ad-vector, then the network must output

an n d× matrix containing all n of these d-dimensional vectors. Learning
these means with maximum likelihood is slightly more complicated than
learning the means of a distribution with only one output mode. We only
want to update the mean for the component that actually produced the
observation. In practice, we do not know which component produced each
observation. The expression for the negative log-likelihood naturally weights
each example’s contribution to the loss for each component by the probability

that the component produced the example.

3. Covariances Σ()i (x): these specify the covariance matrix for each component
i. As when learning a single Gaussian component, we typically use a diagonal

1We consider c to be latent because we do not observe it in the data: given input x and target
y , it is not possible to know with certainty which Gaussian component was responsible fory, but
we can imagine that y was generated by picking one of them, and make that unobserved choice a
random variable.

189

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

x

y

Figure 6.4: Samples drawn from a neural network with a mixture density output layer.
The input x is sampled from a uniform distribution and the output y is sampled from
pmodel (y x|). The neural network is able to learn nonlinear mappings from the input to
the parameters of the output distribution. These parameters include the probabilities
governing which of three mixture components will generate the output as well as the
parameters for each mixture component. Each mixture component is Gaussian with
predicted mean and variance. All of these aspects of the output distribution are able to
vary with respect to the input , and to do so in nonlinear ways.x

matrix to avoid needing to compute determinants. As with learning the means
of the mixture, maximum likelihood is complicated by needing to assign
partial responsibility for each point to each mixture component. Gradient
descent will automatically follow the correct process if given the correct

specification of the negative log-likelihood under the mixture model.

It has been reported that gradient-based optimization of conditional Gaussian
mixtures (on the output of neural networks) can be unreliable, in part because one
gets divisions (by the variance) which can be numerically unstable (when some
variance gets to be small for a particular example, yielding very large gradients).
One solution is to clip gradients (see Sec. 10.12.1) while another is to scale the
gradients heuristically (Murray and Larochelle, 2014).

Gaussian mixture outputs are particularly effective in generative models of

speech (Schuster, 1999) or movements of physical objects (Graves, 2013). The
mixture density strategy gives a way for the network to represent multiple output
modes and to control the variance of its output, which is crucial for obtaining

a high degree of quality in these real-valued domains. An example of a mixture
density network is shown in Fig. 6.4.

190

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

In general, we may wish to continue to model larger vectors y containing more
variables, and to impose richer and richer structures on these output variables. For
example, we may wish for our neural network to output a sequence of characters
that forms a sentence. In these cases, we may continue to use the principle
of maximum likelihood applied to our model p(y; ω(x)), but the model we use
to describe y becomes complex enough to be beyond the scope of this chapter.
Chapter 10 describes how to use recurrent neural networks to define such models
over sequences, and Part III describes advanced techniques for modeling arbitrary
probability distributions.

6.3 Hidden Units

So far we have focused our discussion on design choices for neural networks that

are common to most parametric machine learning models trained with gradient-
based optimization. Now we turn to an issue that is unique to feedforward neural
networks: how to choose the type of hidden unit to use in the hidden layers of the
model.

The design of hidden units is an extremely active area of research and does not
yet have many definitive guiding theoretical principles.

Rectified linear units are an excellent default choice of hidden unit. Many other
types of hidden units are available. It can be difficult to determine when to use
which kind (though rectified linear units are usually an acceptable choice). We
describe here some of the basic intuitions motivating each type of hidden units.
These intuitions can be used to suggest when to try out each of these units. It is
usually impossible to predict in advance which will work best. The design process
consists of trial and error, intuiting that a kind of hidden unit may work well,
and then training a network with that kind of hidden unit and evaluating its
performance on a validation set.

Some of the hidden units included in this list are not actually differentiable at
all input points. For example, the rectified linear function g(z) = max{0, z} is not
differentiable at z = 0. This may seem like it invalidates g for use with a gradient-

based learning algorithm. In practice, gradient descent still performs well enough
for these models to be used for machine learning tasks. This is in part because
neural network training algorithms do not usually arrive at a local minimum of
the cost function, but instead merely reduce its value significantly, as shown in
Fig. 4.3. These ideas will be described further in Chapter 8. Because we do not
expect training to actually reach a point where the gradient is 0 , it is acceptable

for the minima of the cost function to correspond to points with undefined gradient.

191

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Hidden units that are not differentiable are usually non-differentiable at only a
small number of points. In general, a function g (z) has a left derivative defined
by the slope of the function immediately to the left of z and a right derivative
defined by the slope of the function immediately to the right of z . A function
is differentiable at z only if both the left derivative and the right derivative are
defined and equal to each other. The functions used in the context of neural
networks usually have defined left derivatives and defined right derivatives. In the
case of g(z) = max{0, z}, the left derivative at z = 0 0is and the right derivative
is . Software implementations of neural network training usually return one of1

the one-sided derivatives rather than reporting that the derivative is undefined or
raising an error. This may be heuristically justified by observing that gradient-
based optimization on a digital computer is subject to numerical error anyway.
When a function is asked to evaluate g (0), it is very unlikely that the underlying
value truly was . Instead, it was likely to be some small value0 that was rounded
to . In some contexts, more theoretically pleasing justifications are available, but0
these usually do not apply to neural network training. The important point is that
in practice one can safely disregard the non-differentiability of the hidden unit
activation functions described below.

Unless indicated otherwise, most hidden units can be described as accepting
a vector of inputs x, computing an affine transformation z = W x + b, and

then applying an element-wise nonlinear function g(z). Most hidden units are
distinguished from each other only by the choice of the form of the activation
function .g()z

6.3.1 Rectified Linear Units and Their Generalizations

Rectified linear units use the activation function .g z , z() = max 0{ }
Rectified linear units are easy to optimize because they are so similar to linear

units. The only difference between a linear unit and a rectified linear unit is
that a rectified linear unit outputs zero across half its domain. This makes the
derivatives through a rectified linear unit remain large whenever the unit is active.
The gradients are not only large but also consistent. The second derivative of the
rectifying operation is almost everywhere, and the derivative of the rectifying0
operation is everwhere that the unit is active. This means that the gradient1
direction is far more useful for learning than it would be with activation functions
that introduce second-order effects.

Rectified linear units are typically used on top of an affine transformation:

h W= (g x b+). (6.36)

192

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

When initializing the parameters of the affine transformation, it can be a good
practice to set all elements of b to a small, positive value, such as 0.1. This makes
it very likely that the rectified linear units will be initially active for most inputs
in the training set and allow the derivatives to pass through.

Several generalizations of rectified linear units exist. Most of these general-
izations perform comparably to rectified linear units and occasionally perform
better.

One drawback to rectified linear units is that they cannot learn via gradient-

based methods on examples for which their activation is zero. A variety of
generalizations of rectified linear units guarantee that they receive gradient every-
where.

Three generalizations of rectified linear units are based on using a non-zero
slope αi when z i < 0: hi = g (z α,)i = max(0, zi) + α imin (0, zi). Absolute value

rectification fixes αi = −1 to obtain g(z) = | |z . It is used for object recognition
from images (Jarrett , 2009), where it makes sense to seek features that areet al.
invariant under a polarity reversal of the input illumination. Other generalizations
of rectified linear units are more broadly applicable. A leaky ReLU et al.(Maas ,
2013) fixes αi to a small value like 0.01 while a parametric ReLU PReLUor treats

αi as a learnable parameter (He , 2015).et al.

Maxout units (Goodfellow , 2013a) generalize rectified linear units further.et al.
Instead of applying an elementwise function g(z), maxout units divide z into
groups of k values. Each maxout unit then outputs the maximum element of one

of these groups:
g()z i = max

j∈G()i
z j (6.37)

where G
()i is the indices of the inputs for group i, {(i − 1)k+ 1, . . . , ik}. This

provides a way of learning a piecewise linear function that responds to multiple

directions in the input space.x

A maxout unit can learn a piecewise linear, convex function with up to k pieces.
Maxout units can thus be seen as learning the activation function itself rather
than just the relationship between units. With large enough k, a maxout unit can

learn to approximate any convex function with arbitrary fidelity. In particular,

a maxout layer with two pieces can learn to implement the same function of the
input xas a traditional layer using the rectified linear activation function, absolute
value rectification function, or the leaky or parametric ReLU, or can learn to
implement a totally different function altogether. The maxout layer will of course
be parametrized differently from any of these other layer types, so the learning
dynamics will be different even in the cases where maxout learns to implement the

193

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

same function of as one of the other layer types.x

Each maxout unit is now parametrized by k weight vectors instead of just one,
so maxout units typically need more regularization than rectified linear units. They
can work well without regularization if the training set is large and the number of
pieces per unit is kept low (Cai , 2013).et al.

Maxout units have a few other benefits. In some cases, one can gain some sta-
tistical and computational advantages by requiring fewer parameters. Specifically,
if the features captured by n different linear filters can be summarized without

losing information by taking the max over each group of k features, then the next
layer can get by with times fewer weights.k

Because each unit is driven by multiple filters, maxout units have some redun-
dancy that helps them to resist a phenomenon called catastrophic forgetting in
which neural networks forget how to perform tasks that they were trained on in

the past (Goodfellow , 2014a).et al.

Rectified linear units and all of these generalizations of them are based on the
principle that models are easier to optimize if their behavior is closer to linear.
This same general principle of using linear behavior to obtain easier optimization
also applies in other contexts besides deep linear networks. Recurrent networks can
learn from sequences and produce a sequence of states and outputs. When training

them, one needs to propagate information through several time steps, which is much
easier when some linear computations (with some directional derivatives being of
magnitude near 1) are involved. One of the best-performing recurrent network

architectures, the LSTM, propagates information through time via summation—a
particular straightforward kind of such linear activation. This is discussed further
in Sec. 10.11.

6.3.2 Logistic Sigmoid and Hyperbolic Tangent

Prior to the introduction of rectified linear units, most neural networks used the
logistic sigmoid activation function

g z σ z() = () (6.38)

or the hyperbolic tangent activation function

g z z .() = tanh() (6.39)

These activation functions are closely related because .tanh() = 2 (2) 1z σ z −
We have already seen sigmoid units as output units, used to predict the

probability that a binary variable is . Unlike piecewise linear units, sigmoidal1

194

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

units saturate across most of their domain—they saturate to a high value when
z is very positive, saturate to a low value when z is very negative, and are only
strongly sensitive to their input when z is near 0. The widespread saturation of
sigmoidal units can make gradient-based learning very difficult. For this reason,
their use as hidden units in feedforward networks is now discouraged. Their use
as output units is compatible with the use of gradient-based learning when an
appropriate cost function can undo the saturation of the sigmoid in the output
layer.

When a sigmoidal activation function must be used, the hyperbolic tangent

activation function typically performs better than the logistic sigmoid. It resembles
the identity function more closely, in the sense that tanh(0) = 0 while σ(0) = 1

2.
Because tanh is similar to identity near , training a deep neural network0 ŷ =

w tanh(U tanh(V x)) resembles training a linear model ŷ = wU V x so
long as the activations of the network can be kept small. This makes training the
tanh network easier.

Sigmoidal activation functions are more common in settings other than feed-
forward networks. Recurrent networks, many probabilistic models, and some
autoencoders have additional requirements that rule out the use of piecewise
linear activation functions and make sigmoidal units more appealing despite the
drawbacks of saturation.

6.3.3 Other Hidden Units

Many other types of hidden units are possible, but are used less frequently.

In general, a wide variety of differentiable functions perform perfectly well.
Many unpublished activation functions perform just as well as the popular ones.
To provide a concrete example, the authors tested a feedforward network using
h = cos(Wx +b) on the MNIST dataset and obtained an error rate of less than
1%, which is competitive with results obtained using more conventional activation

functions. During research and development of new techniques, it is common
to test many different activation functions and find that several variations on

standard practice perform comparably. This means that usually new hidden unit
types are published only if they are clearly demonstrated to provide a significant

improvement. New hidden unit types that perform roughly comparably to known
types are so common as to be uninteresting.

It would be impractical to list all of the hidden unit types that have appeared
in the literature. We highlight a few especially useful and distinctive ones.

One possibility is to not have an activation g(z) at all. One can also think of

195

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

this as using the identity function as the activation function. We have already
seen that a linear unit can be useful as the output of a neural network. It may
also be used as a hidden unit. If every layer of the neural network consists of only
linear transformations, then the network as a whole will be linear. However, it
is acceptable for some layers of the neural network to be purely linear. Consider
a neural network layer with n inputs and p outputs, h = g(W x+ b). We may
replace this with two layers, with one layer using weight matrix U and the other
using weight matrix V . If the first layer has no activation function, then we have
essentially factored the weight matrix of the original layer based on W. The

factored approach is to compute h= g(VUx + b). If U produces q outputs,
then U and V together contain only (n +p)q parameters, while W contains np
parameters. For small q, this can be a considerable saving in parameters. It
comes at the cost of constraining the linear transformation to be low-rank, but
these low-rank relationships are often sufficient. Linear hidden units thus offer an
effective way of reducing the number of parameters in a network.

Softmax units are another kind of unit that is usually used as an output (as
described in Sec. 6.2.2.3) but may sometimes be used as a hidden unit. Softmax
units naturally represent a probability distribution over a discrete variable with k
possible values, so they may be used as a kind of switch. These kinds of hidden
units are usually only used in more advanced architectures that explicitly learn to

manipulate memory, described in Sec. 10.15.

A few other reasonably common hidden unit types include:

• Radial basis function RBFor unit: hi = exp

− 1
σ2i

||W:,i − x||2

. This

function becomes more active as x approaches a template W:,i . Because it
saturates to for most , it can be difficult to optimize.0 x

• Softplus: g(a) =ζ (a) = log(1 + ea). This is a smooth version of the rectifier,
introduced by Dugas (2001) for function approximation and by Nairet al.

and Hinton (2010) for the conditional distributions of undirected probabilistic
models. Glorot (2011a) compared the softplus and rectifier and foundet al.
better results with the latter. The use of the softplus is generally discouraged.

The softplus demonstrates that the performance of hidden unit types can
be very counterintuitive—one might expect it to have an advantage over
the rectifier due to being differentiable everywhere or due to saturating less

completely, but empirically it does not.

• Hard tanh : this is shaped similarly to the tanh and the rectifier but unlike
the latter, it is bounded, g(a) = max(−1,min(1, a)). It was introduced
by Collobert (2004).

196

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Hidden unit design remains an active area of research and many useful hidden
unit types remain to be discovered.

6.4 Architecture Design

Another key design consideration for neural networks is determining the architecture.
The word architecture refers to the overall structure of the network: how many
units it should have and how these units should be connected to each other.

Most neural networks are organized into groups of units called layers. Most
neural network architectures arrange these layers in a chain structure, with each
layer being a function of the layer that preceded it. In this structure, the first layer
is given by

h (1)= g(1)

W (1)x b+ (1)

, (6.40)

the second layer is given by

h(2)= g (2)

W (2)h(1) + b(2)

, (6.41)

and so on.

In these chain-based architectures, the main architectural considerations are
to choose the depth of the network and the width of each layer. As we will see,

a network with even one hidden layer is sufficient to fit the training set. Deeper
networks often are able to use far fewer units per layer and far fewer parameters
and often generalize to the test set, but are also often harder to optimize. The
ideal network architecture for a task must be found via experimentation guided by

monitoring the validation set error.

6.4.1 Universal Approximation Properties and Depth

A linear model, mapping from features to outputs via matrix multiplication, can
by definition represent only linear functions. It has the advantage of being easy to
train because many loss functions result in a convex optimization problem when
applied to linear models. Unfortunately, we often want to learn nonlinear functions.

At first glance, we might presume that learning a nonlinear function requires
designing a specialized model family for the kind of nonlinearity we want to learn.
Fortunately, feedforward networks with hidden layers provide a universal approxi-
mation framework. Specifically, the universal approximation theorem et al.(Hornik ,

1989; Cybenko, 1989) states that a feedforward network with a linear output layer

197

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

and at least one hidden layer with any “squashing” activation function (such as
the logistic sigmoid activation function) can approximate any Borel measurable
function from one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden units. The
derivatives of the feedforward network can also approximate the derivatives of the
function arbitrarily well (Hornik , 1990). The concept of Borel measurabilityet al.
is beyond the scope of this book; for our purposes it suffices to say that any
continuous function on a closed and bounded subset of R

n is Borel measurable
and therefore may be approximated by a neural network. A neural network may

also approximate any function mapping from any finite dimensional discrete space
to another. While the original theorems were first stated in terms of units with
activation functions that saturate both for very negative and for very positive
arguments, universal approximation theorems have also been proven for a wider
class of activation functions, which includes the now commonly used rectified linear
unit (Leshno , 1993).et al.

The universal approximation theorem means that regardless of what function
we are trying to learn, we know that a large MLP will be able to represent this
function. However, we are not guaranteed that the training algorithm will be
able to learn that function. Even if the MLP is able to represent the function,
learning can fail for two different reasons. First, the optimization algorithm used

for training may not be able to find the value of the parameters that corresponds
to the desired function. Second, the training algorithm might choose the wrong
function due to overfitting. Recall from Sec. 5.2.1 that the “no free lunch” theorem
shows that there is no universal machine learning algorithm. Feedforward networks
provide a universal system for representing functions, in the sense that, given a
function, there exists a feedforward network that approximates the function. There
is no universal procedure for examining a training set of specific examples and
choosing a function that will generalize to points not in the training set.

The universal approximation theorem says that there exists a network large
enough to achieve any degree of accuracy we desire, but the theorem does not
say how large this network will be. Barron (1993) provides some bounds on the

size of a single-layer network needed to approximate a broad class of functions.
Unfortunately, in the worse case, an exponential number of hidden units (possibly
with one hidden unit corresponding to each input configuration that needs to be
distinguished) may be required. This is easiest to see in the binary case: the
number of possible binary functions on vectors v ∈ {0, 1}n is 2 2

n

and selecting
one such function requires 2n bits, which will in general require O(2n) degrees of
freedom.

198

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

In summary, a feedforward network with a single layer is sufficient to represent
any function, but the layer may be infeasibly large and may fail to learn and
generalize correctly. In many circumstances, using deeper models can reduce the
number of units required to represent the desired function and can reduce the
amount of generalization error.

There exist families of functions which can be approximated efficiently by an
architecture with depth greater than some value d, but which require a much larger
model if depth is restricted to be less than or equal to d. In many cases, the number
of hidden units required by the shallow model is exponential in n . Such results

were first proven for models that do not resemble the continuous, differentiable
neural networks used for machine learning, but have since been extended to these
models. The first results were for circuits of logic gates (Håstad, 1986). Later
work extended these results to linear threshold units with non-negative weights
(Håstad and Goldmann, 1991; Hajnal , 1993), and then to networks withet al.
continuous-valued activations (Maass, 1992; Maass , 1994). Many modernet al.
neural networks use rectified linear units. Leshno (1993) demonstratedet al.
that shallow networks with a broad family of nonpolynomial activation functions,
including rectified linear units, have universal approximation properties, but these
results do not address the questions of depth or efficiency—they specify only that
a sufficiently wide rectifier network could represent any function. Pascanu et al.

(2013b) and Montufar (2014) showed that functions representable with aet al.
deep rectifier net can require an exponential number of hidden units with a shallow
(one hidden layer) network. More precisely, they showed that piecewise linear
networks (which can be obtained from rectifier nonlinearities or maxout units) can
represent functions with a number of regions that is exponential in the depth of the
network. Fig. 6.5 illustrates how a network with absolute value rectification creates
mirror images of the function computed on top of some hidden unit, with respect
to the input of that hidden unit. Each hidden unit specifies where to fold the
input space in order to create mirror responses (on both sides of the absolute value
nonlinearity). By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of regular
(e.g., repeating) patterns.

More precisely, the main theorem in Montufar (2014) states that theet al.
number of linear regions carved out by a deep rectifier network with d inputs,
depth , and units per hidden layer, isl n

O

n

d

 d l(−1)
nd

, (6.42)

i.e., exponential in the depth . In the case of maxout networks with filters perl k

199

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Figure 6.5: An intuitive, geometric explanation of the exponential advantage of deeper
rectifier networks formally shown by Pascanu (2014a) and by Montufar (2014).et al. et al.

(Left) An absolute value rectification unit has the same output for every pair of mirror
points in its input. The mirror axis of symmetry is given by the hyperplane defined by
the weights and bias of the unit. A function computed on top of that unit (the curved,
gray decision surface) will be a mirror image of a simpler pattern across that axis of
symmetry. The function can be obtained by folding the space around the axis of(Center)
symmetry. Another repeating pattern can be folded on top of the first (by another(Right)

downstream unit) to obtain another symmetry (which is now repeated four times, with
two hidden layers).

unit, the number of linear regions is

O

k(1)+l− d

. (6.43)

Of course, there is no guarantee that the kinds of functions we want to learn in
applications of machine learning (and in particular for AI) share such a property.

We may also want to choose a deep model for statistical reasons. Any time

we choose a specific machine learning algorithm, we are implicitly stating some
set of prior beliefs we have about what kind of function the algorithm should
learn. Choosing a deep model encodes a very general belief that the function we

want to learn should involve composition of several simpler functions. This can be
interpreted from a representation learning point of view as saying that we believe

the learning problem consists of discovering a set of underlying factors of variation
that can in turn be described in terms of other, simpler underlying factors of

variation. Alternately, we can interpret the use of a deep architecture as expressing
a belief that the function we want to learn is a computer program consisting of
multiple steps, where each step makes use of the previous step’s output. These
intermediate outputs are not necessarily factors of variation, but can instead be
analogous to counters or pointers that the network uses to organize its internal

processing. Empirically, greater depth does seem to result in better generalization
for a wide variety of tasks (Bengio , 2007; Erhan , 2009; Bengio, 2009;et al. et al.
Mesnil et al., 2011; Ciresan , 2012; Krizhevskyet al. et al., 2012; Sermanet ,et al.

200

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

2013; Farabet , 2013a; Couprie , 2013; Kahou , 2013; Goodfellowet al. et al. et al.
et al. et al., 2014d; Szegedy , 2014a). See Fig. 6.6 and Fig. 6.7 for examples of some
of these empirical results. This suggests that using deep architectures does indeed
express a useful prior over the space of functions the model learns.

3 4 5 6 7 8 9 10 11

Number of hidden layers

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

T
es

t
ac

cu
ra

cy
 (

%
)

Effect of Depth

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
et al. (2014d). The test set accuracy consistently increases with increasing depth. See
Fig. 6.7 for a control experiment demonstrating that other increases to the model size do
not yield the same effect.

6.4.2 Other Architectural Considerations

So far we have described neural networks as being simple chains of layers, with the
main considerations being the depth of the network and the width of each layer.

In practice, neural networks show considerably more diversity.

Many neural network architectures have been developed for specific tasks.

201

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 0 0 2 0 4 0 6 0 8 1 0.

Number of parameters ×108
91

92

93

94

95

96

97

T
es
t
a
cc
u
ra
cy
(%
)

Effect of Number of Parameters

3, convolutional

3, fully connected

11, convolutional

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow (2014d) shows that increasing the numberet al.
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).

202

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Specialized architectures for computer vision called convolutional networks are
described in Chapter 9. Feedforward networks may also be generalized to the
recurrent neural networks for sequence processing, described in Chapter 10, which
have their own architectural considerations.

In general, the layers need not be connected in a chain, even though this is the
most common practice. Many architectures build a main chain but then add extra
architectural features to it, such as skip connections going from layer i to layer
i + 2 or higher. These skip connections make it easier for the gradient to flow from
output layers to layers nearer the input.

Another key consideration of architecture design is exactly how to connect a
pair of layers to each other. In the default neural network layer described by a linear
transformation via a matrix W , every input unit is connected to every output
unit. Many specialized networks in the chapters ahead have fewer connections, so
that each unit in the input layer is connected to only a small subset of units in
the output layer. These strategies for reducing the number of connections reduce
the number of parameters and the amount of computation required to evaluate
the network, but are often highly problem-dependent. For example, convolutional
networks, described in Chapter 9, use specialized patterns of sparse connections
that are very effective for computer vision problems. In this chapter, it is difficult
to give much more specific advice concerning the architecture of a generic neural

network. Subsequent chapters develop the particular architectural strategies that
have been found to work well for different application domains.

6.5 Back-Propagation and Other Differentiation Algo-

rithms

When we use a feedforward neural network to accept an input x and produce an
output ŷ, information flows forward through the network. The inputs x provide
the initial information that then propagates up to the hidden units at each layer
and finally produces ŷ. This is called forward propagation. During training,
forward propagation can continue onward until it produces a scalar cost J (θ). The
back-propagation et al.algorithm (Rumelhart , 1986a), often simply called backprop,
allows the information from the cost to then flow backwards through the network,
in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but
numerically evaluating such an expression can be computationally expensive. The
back-propagation algorithm does so using a simple and inexpensive procedure.

203

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

The term back-propagation is often misunderstood as meaning the whole
learning algorithm for multi-layer neural networks. Actually, back-propagation
refers only to the method for computing the gradient, while another algorithm,
such as stochastic gradient descent, is used to perform learning using this gradient.
Furthermore, back-propagation is often misunderstood as being specific to multi-
layer neural networks, but in principle it can compute derivatives of any function
(for some functions, the correct response is to report that the derivative of the
function is undefined). Specifically, we will describe how to compute the gradient
∇x f(x y,) for an arbitrary function f , wherex is a set of variables whose derivatives

are desired, and y is an additional set of variables that are inputs to the function
but whose derivatives are not required. In learning algorithms, the gradient we most
often require is the gradient of the cost function with respect to the parameters,
∇θJ(θ). Many machine learning tasks involve computing other derivatives, either
as part of the learning process, or to analyze the learned model. The back-
propagation algorithm can be applied to these tasks as well, and is not restricted
to computing the gradient of the cost function with respect to the parameters. The
idea of computing derivatives by propagating information through a network is
very general, and can be used to compute values such as the Jacobian of a function
f with multiple outputs. We restrict our description here to the most commonly
used case where has a single output.f

6.5.1 Computational Graphs

So far we have discussed neural networks with a relatively informal graph language.
To describe the back-propagation algorithm more precisely, it is helpful to have a
more precise computational graph language.

Many ways of formalizing computation as graphs are possible.

Here, we use each node in the graph to indicate a variable. The variable may
be a scalar, vector, matrix, tensor, or even a variable of another type.

To formalize our graphs, we also need to introduce the idea of an operation.
An operation is a simple function of one or more variables. Our graph language

is accompanied by a set of allowable operations. Functions more complicated
than the operations in this set may be described by composing many operations

together.

Without loss of generality, we define an operation to return only a single
output variable. This does not lose generality because the output variable can have
multiple entries, such as a vector. Software implementations of back-propagation

usually support operations with multiple outputs, but we avoid this case in our

204

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

description because it introduces many extra details that are not important to
conceptual understanding.

If a variable y is computed by applying an operation to a variable x, then
we draw a directed edge from x to y. We sometimes annotate the output node
with the name of the operation applied, and other times omit this label when the
operation is clear from context.

Examples of computational graphs are shown in Fig. 6.8.

6.5.2 Chain Rule of Calculus

The chain rule of calculus (not to be confused with the chain rule of probability) is
used to compute the derivatives of functions formed by composing other functions

whose derivatives are known. Back-propagation is an algorithm that computes the
chain rule, with a specific order of operations that is highly efficient.

Let x be a real number, and let f and g both be functions mapping from a real
number to a real number. Suppose that y= g (x) and z =f(g(x)) = f (y). Then
the chain rule states that

dz

dx
=
dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x ∈ Rm, y ∈ Rn ,
g maps from R

m to R
n, and f maps from R

n to R. If y = g (x) and z = f (y), then

∂z

∂x i
=

j

∂z

∂yj

∂yj
∂xi
. (6.45)

In vector notation, this may be equivalently written as

∇xz =

∂y

∂x

∇y z, (6.46)

where ∂y
∂x

is the Jacobian matrix of .n m× g

From this we see that the gradient of a variable xby multiplying a Jacobian ma-
trix ∂y

∂x by a gradient ∇yz . The back-propagation algorithm consists of performing
such a Jacobian-gradient product for each operation in the graph.

Usually we do not apply the back-propagation algorithm merely to vectors,
but rather to tensors of arbitrary dimensionality. Conceptually, this is exactly the
same as back-propagation with vectors. The only difference is how the numbers
are arranged in a grid to form a tensor. We could imagine flattening each tensor

205

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

⇥

xx ww

(b)

u(1)u(1)

dot

bb

u(2)u(2)

+

ŷ̂y

(c)

XX WW

U(1)U(1)

matmul

bb

U(2)U(2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

u(1)u(1)

sqr

u(2)u(2)

sum

u(3)u(3)

⇥

Figure 6.8: Examples of computational graphs. The graph using the(a) × operation to
compute z = xy. The graph for the logistic regression prediction(b) ŷ =σ

xw + b

.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u ()i . The(c)
computational graph for the expressionH = max{0,XW +b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X . Examples a–c applied at most one operation to each variable, but it(d)
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make the both the prediction ŷ and the weight decay penalty λ

i
w2i .

206

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

into a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write ∇Xz ,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all
possible index tuples i, (∇X z)i gives

∂z
∂Xi

. This is exactly the same as how for all

possible integer indices i into a vector, (∇xz)i gives
∂z
∂xi

. Using this notation, we

can write the chain rule as it applies to tensors. If and , thenY X= (g) z f= ()Y

∇Xz =

j

(∇XY j)
∂z

∂Y j
. (6.47)

6.5.3 Recursively Applying the Chain Rule to Obtain Backprop

Using the chain rule, it is straightforward to write down an algebraic expression for
the gradient of a scalar with respect to any node in the computational graph that

produced that scalar. However, actually evaluating that expression in a computer
introduces some extra considerations.

Specifically, many subexpressions may be repeated several times within the
overall expression for the gradient. Any procedure that computes the gradient
will need to choose whether to store these subexpressions or to recompute them
several times. An example of how these repeated subexpressions arise is given in
Fig. 6.9. In some cases, computing the same subexpression twice would simply
be wasteful. For complicated graphs, there can be exponentially many of these

wasted computations, making a naive implementation of the chain rule infeasible.
In other cases, computing the same subexpression twice could be a valid way to
reduce memory consumption at the cost of higher runtime.

We first begin by a version of the back-propagation algorithm that specifies
the actual gradient computation directly (Algorithm 6.2 along with Algorithm 6.1
for the associated forward computation), in the order it will actually be done and

according to the recursive application of chain rule. One could either directly
perform these computations or view the description of the algorithm as a symbolic
specification of the computational graph for computing the back-propagation. How-
ever, this formulation does not make explicit the manipulation and the construction
of the symbolic graph that performs the gradient computation. Such a formulation
is presented below in Sec. 6.5.6, with Algorithm 6.5, where we also generalize to
nodes that contain arbitrary tensors.

207

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

First consider a computational graph describing how to compute a single scalar
u ()n (say the loss on a training example). This scalar is the quantity whose
gradient we want to obtain, with respect to the ni input nodes u

(1) to u(ni). In

other words we wish to compute ∂u
()n

∂u()i for all i ∈ {1, 2, . . . , ni} . In the application
of back-propagation to computing gradients for gradient descent over parameters,
u ()n will be the cost associated with an example or a minibatch, while u(1) to u(ni)

correspond to the parameters of the model.

We will assume that the nodes of the graph have been ordered in such a way
that we can compute their output one after the other, starting at u(ni+1) and
going up to u()n . As defined in Algorithm 6.1, each node u()i is associated with an
operation f ()i and is computed by evaluating the function

u()i = (f A
()i) (6.48)

where A()i is the set of all nodes that are parents of u ()i .

Algorithm 6.1 A procedure that performs the computations mapping ni inputs
u (1) to u(ni) to an output u()n . This defines a computational graph where each node
computes numerical value u()i by applying a function f()i to the set of arguments

A
()i that comprises the values of previous nodes u()j , j < i, with j Pa∈ (u()i). The

input to the computational graph is the vector x, and is set into the first ni nodes

u (1) to u(n i) . The output of the computational graph is read off the last (output)
node u ()n .

for i , . . . , n= 1 i do

u ()i ← xi
end for
for i n= i + 1, . . . , n do
A
()i ← {u()j | ∈j P a(u()i)}
u ()i ← f ()i (A()i)

end for

return u ()n

That algorithm specifies the forward propagation computation, which we could
put in a graph G . In order to perform back-propagation, we can construct a
computational graph that depends on G and adds to it an extra set of nodes. These
form a subgraph B with one node per node of G. Computation in B proceeds in
exactly the reverse of the order of computation in G, and each node of B computes

the derivative
∂u()n

∂u ()i associated with the forward graph node u()i . This is done

208

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

using the chain rule with respect to scalar output u()n :

∂u()n

∂u()j
=

i j Pa u: ∈ (()i)

∂u ()n

∂u()i
∂u ()i

∂u()j
(6.49)

as specified by Algorithm 6.2. The subgraph B contains exactly one edge for each
edge from node u()j to node u()i of G. The edge from u()j to u()i is associated with

the computation of ∂u
()i

∂u()j
. In addition, a dot product is performed for each node,

between the gradient already computed with respect to nodes u()i that are children

of u ()j and the vector containing the partial derivatives ∂u
()i

∂u ()j
for the same children

nodes u()i . To summarize, the amount of computation required for performing
the back-propagation scales linearly with the number of edges in G, where the
computation for each edge corresponds to computing a partial derivative (of one
node with respect to one of its parents) as well as performing one multiplication
and one addition. Below, we generalize this analysis to tensor-valued nodes, which
is just a way to group multiple scalar values in the same node and enable more
efficient implementations.

The back-propagation algorithm is designed to reduce the number of common

subexpressions without regard to memory. Specifically, it performs on the order
of one Jacobian product per node in the graph. This can be seen from the fact
in Algorithm 6.2 that backprop visits each edge from node u()j to node u()i of

the graph exactly once in order to obtain the associated partial derivative ∂u()j

∂u ()i
.

Back-propagation thus avoids the exponential explosion in repeated subexpressions.

However, other algorithms may be able to avoid more subexpressions by performing
simplications on the computational graph, or may be able to conserve memory by
recomputing rather than storing some subexpressions. We will revisit these ideas
after describing the back-propagation algorithm itself.

6.5.4 Back-Propagation Computation in Fully-Connected MLP

To clarify the above definition of the back-propagation computation, let us consider
the specific graph associated with a fully-connected multi-layer MLP.

Algorithm 6.3 first shows the forward propagation, which maps parameters to
the supervised loss L(ŷ y,) associated with a single (input,target) training example
()x y, , with ŷ the output of the neural network when is provided in input.x

Algorithm 6.4 then shows the corresponding computation to be done for
applying the back-propagation algorithm to this graph.

Algorithm 6.3 and Algorithm 6.4 are demonstrations that are chosen to be

209

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w ∈ R be the input to the graph. We use the same function f :R R→
as the operation that we apply at every step of a chain: x = f(w), y = f (x), z= f(y).
To compute ∂z

∂w, we apply Eq. 6.44 and obtain:

∂z

∂w

=
∂z

∂y

∂y

∂x

∂x

∂w

=f ()y f()x f ()w (6.50)

=f ((()))f f w f(())f w f ()w (6.51)

Eq. 6.50 suggests an implementation in which we compute the value of f(w) only once
and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by Eq. 6.51, where the subexpression
f (w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low,
the back-propagation approach of Eq. 6.50 is clearly preferable because of its reduced
runtime. However, Eq. 6.51 is also a valid implementation of the chain rule, and is useful
when memory is limited.

210

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.2 Simplified version of the back-propagation algorithm for computing
the derivatives of u()n with respect to the variables in the graph. This example is
intended to further understanding by showing a simplified case where all variables
are scalars, and we wish to compute the derivatives with respect to u(1) , . . . , u(ni).

This simplified version computes the derivatives of all nodes in the graph. The
computational cost of this algorithm is proportional to the number of edges in
the graph, assuming that the partial derivative associated with each edge requires
a constant time. This is of the same order as the number of computations for

the forward propagation. Each ∂u ()i

∂u()j
is a function of the parents u()j of u()i , thus

linking the nodes of the forward graph to those added for the back-propagation
graph.

Run forward propagation (Algorithm 6.1 for this example) to obtain the activa-
tions of the network
Initialize grad_table, a data structure that will store the derivatives that have
been computed. The entry grad table_ [u ()i] will store the computed value of
∂u()n

∂u()i
.

grad table_ [∂u()n] 1←
for doj n= − 1 down to 1

The next line computes ∂u
()n

∂u ()j
=

i j Pa u: ∈ (()i)

∂u()n

∂u ()i
∂u()i

∂u ()j
using stored values:

grad table_ [u()j] ←
i j Pa u: ∈ (()i) grad table_ [u()i] ∂u

()i

∂u()j

end for

return {grad table_ [u()i] = 1| i , . . . , ni}

simple and straightforward to understand. However, they are specialized to one
specific problem.

Modern software implementations are based on the generalized form of back-

propagation described in Sec. 6.5.6 below, which can accommodate any computa-
tional graph by explicitly manipulating a data structure for representing symbolic
computation.

6.5.5 Symbol-to-Symbol Derivatives

Algebraic expressions and computational graphs both operate on symbols, or

variables that do not have specific values. These algebraic and graph-based
representations are called symbolic representations. When we actually use or

train a neural network, we must assign specific values to these symbols. We
replace a symbolic input to the network x with a specific value, such asnumeric

211

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.3 Forward propagation through a typical deep neural network and
the computation of the cost function. The loss L(ŷ y,) depends on the output ŷ
and on the target y (see Sec. 6.2.1.1 for examples of loss functions). To obtain the
total cost J, the loss may be added to a regularizer Ω(θ), where θ contains all the

parameters (weights and biases). Algorithm 6.4 shows how to compute gradients
of J with respect to parameters W and b. For simplicity, this demonstration uses
only a single input example x. Practical applications should use a minibatch. See
Sec. 6.5.7 for a more realistic demonstration.

Require: Network depth, l
Require: W ()i , i , . . . , l ,∈ {1 } the weight matrices of the model

Require: b()i , i , . . . , l ,∈ {1 } the bias parameters of the model
Require: x, the input to process

Require: y, the target output
h(0) = x
for dok , . . . , l= 1

a()k = b()k +W ()k h(1)k−

h()k = (f a ()k)
end for
ŷ h= ()l

J L= (ŷ y,) + Ω()λ θ

[1 2 3 765 1 8]. , . ,− . .

Some approaches to back-propagation take a computational graph and a set

of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert , 2011c) and Caffe (Jia, 2013).et al.

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This

is the approach taken by Theano (Bergstra , 2010; Bastien , 2012)et al. et al.

and TensorFlow (Abadi , 2015). An example of how this approach workset al.
is illustrated in Fig. 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher

derivatives. Computation of higher-order derivatives is described in Sec. 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in
terms of constructing a computational graph for the derivatives. Any subset of the

212

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.4 Backward computation for the deep neural network of Algo-
rithm 6.3, which uses in addition to the input x a targety. This computation
yields the gradients on the activations a()k for each layer k, starting from the
output layer and going backwards to the first hidden layer. From these gradients,
which can be interpreted as an indication of how each layer’s output should change
to reduce error, one can obtain the gradient on the parameters of each layer. The
gradients on weights and biases can be immediately used as part of a stochas-
tic gradient update (performing the update right after the gradients have been
computed) or used with other gradient-based optimization methods.

After the forward computation, compute the gradient on the output layer:

g← ∇ŷJ = ∇ŷL(ŷ, y)

for k l, l= − 1, . . . , 1 do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if is element-wise):f
g← ∇a ()k J f= g (a()k)

Compute gradients on weights and biases (including the regularization term,

where needed):
∇b()k J λ= +g ∇b ()k Ω()θ

∇W()k J = g h (1)k− + λ∇W()k Ω()θ
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g← ∇h (1)k− J = W ()k g

end for

213

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

zz

xx

yy

ww

f

f

f

dz

dy

dz

dy

f0

dy

dx

dy

dx

f0
dz

dx

dz

dx

⇥

dx

dw

dx

dw

f0
dz

dw

dz

dw

⇥

Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left) In this example, we begin with a graph
representing z= f (f(f(w))). We run the back-propagation algorithm, instructing(Right)
it to construct the graph for the expression corresponding to dz

dw
. In this example, we do

not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

214

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

graph may then be evaluated using specific numerical values at a later time. This
allows us to avoid specifying exactly when each operation should be computed.
Instead, a generic graph evaluation engine can evaluate every node as soon as its
parents’ values are available.

The description of the symbol-to-symbol based approach subsumes the symbol-
to-number approach. The symbol-to-number approach can be understood as
performing exactly the same computations as are done in the graph built by the
symbol-to-symbol approach. The key difference is that the symbol-to-number
approach does not expose the graph.

6.5.6 General Back-Propagation

The back-propagation algorithm is very simple. To compute the gradient of some
scalar zwith respect to one of its ancestors x in the graph, we begin by observing

that the gradient with respect to z is given by dz
dz = 1. We can then compute

the gradient with respect to each parent of z in the graph by multiplying the
current gradient by the Jacobian of the operation that produced z. We continue
multiplying by Jacobians traveling backwards through the graph in this way until
we reach x. For any node that may be reached by going backwards from z through

two or more paths, we simply sum the gradients arriving from different paths at
that node.

More formally, each node in the graph G corresponds to a variable. To achieve
maximum generality, we describe this variable as being a tensor V. Tensor can
in general have any number of dimensions, and subsume scalars, vectors, and
matrices.

We assume that each variable is associated with the following subroutines:V

• get operation_ (V): This returns the operation that computes V, repre-
sented by the edges coming into V in the computational graph. For example,
there may be a Python or C++ class representing the matrix multiplication
operation, and the get_operation function. Suppose we have a variable that
is created by matrix multiplication, C = AB. Then get operation_ (V)

returns a pointer to an instance of the corresponding C++ class.

• get consumers_ (V,G): This returns the list of variables that are children of
V in the computational graph .G

• Gget inputs_ (V,): This returns the list of variables that are parents of V

in the computational graph .G

215

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Each operation op is also associated with a bprop operation. This bprop

operation can compute a Jacobian-vector product as described by Eq. 6.47.
This is how the back-propagation algorithm is able to achieve great generality.
Each operation is responsible for knowing how to back-propagate through the
edges in the graph that it participates in. For example, we might use a matrix
multiplication operation to create a variable C = AB. Suppose that the gradient
of a scalar z with respect to C is given by G. The matrix multiplication operation
is responsible for defining two back-propagation rules, one for each of its input
arguments. If we call the bprop method to request the gradient with respect to A

given that the gradient on the output is G , then the bprop method of the matrix
multiplication operation must state that the gradient with respect to A is given
by GB. Likewise, if we call the bprop method to request the gradient with
respect to B , then the matrix operation operation is responsible for implementing
the bprop method and specifying that the desired gradient is given by AB.
The back-propagation algorithm itself does not need to know any differentiation
rules. It only needs to call each operation’s bprop rules with the right arguments.
Formally, must returnop bprop inputs. (, ,X G)

i

(∇Xop f inputs. ()i) Gi , (6.52)

which is just an implementation of the chain rule as expressed in Eq. 6.47.

Here, inputs is a list of inputs that are supplied to the operation, op.f is the
mathematical function that the operation implements, X is the input whose gradient
we wish to compute, and is the gradient on the output of the operation.G

The op.bprop method should always pretend that all of its inputs are distinct
from each other, even if they are not. For example, if the mul operator is passed
two copies of x to compute x2, the op.bprop method should still return x as the
derivative with respect to both inputs. The back-propagation algorithm will later
add both of these arguments together to obtain 2x , which is the correct total
derivative on .x

Software implementations of back-propagation usually provide both the opera-

tions and their bprop methods, so that users of deep learning software libraries are
able to back-propagate through graphs built using common operations like matrix

multiplication, exponents, logarithms, and so on. Software engineers who build a
new implementation of back-propagation or advanced users who need to add their

own operation to an existing library must usually derive the op.bprop method for
any new operations manually.

The back-propagation algorithm is formally described in Algorithm 6.5.

216

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.5 The outermost skeleton of the back-propagation algorithm. This
portion does simple setup and cleanup work. Most of the important work happens
in the subroutine of Algorithm 6.6build_grad
.

Require: T, the target set of variables whose gradients must be computed.
Require: G, the computational graph
Require: z, the variable to be differentiated

Let G be G pruned to contain only nodes that are ancestors of z and descendents

of nodes in .T
Initialize , a data structure associating tensors to their gradientsgrad_table

grad table_ [] 1z ←
for doV in T

build grad_ (V, ,G G , grad table_)

end for
Return restricted tograd_table T

In Sec. 6.5.2, we motivated back-propagation as a strategy for avoiding comput-
ing the same subexpresssion in the chain rule multiple times. The naive algorithm
could have exponential runtime due to these repeated subexpressions. Now that
we have specified the back-propagation algorithm, we can understand its com-

putational cost. If we assume that each operation evaluation has roughly the
same cost, then we may analyze the computational cost in terms of the number
of operations executed. Keep in mind here that we refer to an operation as the

fundamental unit of our computational graph, which might actually consist of very
many arithmetic operations (for example, we might have a graph that treats matrix
multiplication as a single operation). Computing a gradient in a graph with n nodes

will never execute more than O(n2) operations or store the output of more than
O(n2) operations. Here we are counting operations in the computational graph, not
individual operations executed by the underlying hardware, so it is important to

remember that the runtime of each operation may be highly variable. For example,
multiplying two matrices that each contain millions of entries might correspond to
a single operation in the graph. We can see that computing the gradient requires as
most O(n2) operations because the forward propagation stage will at worst execute
all n nodes in the original graph (depending on which values we want to compute,

we may not need to execute the entire graph). The back-propagation algorithm
adds one Jacobian-vector product, which should be expressed with O(1) nodes, per
edge in the original graph. Because the computational graph is a directed acyclic
graph it has at most O(n2) edges. For the kinds of graphs that are commonly used

in practice, the situation is even better. Most neural network cost functions are

217

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

Algorithm 6.6 The inner loop subroutine build grad_ (V, ,G G , grad table_) of
the back-propagation algorithm, called by the back-propagation algorithm defined
in Algorithm 6.5.

Require: V, the variable whose gradient should be added to and .G grad_table

Require: G, the graph to modify.

Require: G , the restriction of to nodes that participate in the gradient.G
Require: grad_table, a data structure mapping nodes to their gradients
if thenV is in grad_table

Return _grad table[]V

end if
i ← 1

for C Vin _get consumers(,G) do
op get operation← _ ()C

D C← build grad_ (, ,G G , grad table_)
G()i ← Gop bprop get inputs. (_ (C,)), ,V D

i i← + 1
end for
G ←

iG

()i

grad table_ [] = V G

Insert and the operations creating it intoG G
Return G

roughly chain-structured, causing back-propagation to have O(n) cost. This is far
better than the naive approach, which might need to execute exponentially many

nodes. This potentially exponential cost can be seen by expanding and rewriting
the recursive chain rule (Eq. 6.49) non-recursively:

∂u()n

∂u()j
=

path (u(π1),u (π2) ,...,u(πt)),
fromπ1= toj πt=n

t

k=2

∂u(π k)

∂u(πk−1)
. (6.53)

Since the number of paths from node j to noden can grow up to exponentially in the
length of these paths, the number of terms in the above sum, which is the number
of such paths, can grow exponentially with the depth of the forward propagation

graph. This large cost would be incurred because the same computation for
∂u()i

∂u()j
would be redone many times. To avoid such recomputation, we can think

of back-propagation as a table-filling algorithm that takes advantage of storing

intermediate results ∂u
()n

∂u ()i
. Each node in the graph has a corresponding slot in a

table to store the gradient for that node. By filling in these table entries in order,

218

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

back-propagation avoids repeating many common subexpressions. This table-filling
strategy is sometimes called dynamic programming.

6.5.7 Example: Back-Propagation for MLP Training

As an example, we walk through the back-propagation algorithm as it is used to

train a multilayer perceptron.

Here we develop a very simple multilayer perception with a single hidden
layer. To train this model, we will use minibatch stochastic gradient descent.
The back-propagation algorithm is used to compute the gradient of the cost on a
single minibatch. Specifically, we use a minibatch of examples from the training
set formatted as a design matrix X and a vector of associated class labels y.
The network computes a layer of hidden features H = max{0,XW(1)}. To

simplify the presentation we do not use biases in this model. We assume that our
graph language includes a relu operation that can compute max{0,Z} element-
wise. The predictions of the unnormalized log probabilities over classes are then
given by HW (2) . We assume that our graph language includes a cross_entropy

operation that computes the cross-entropy between the targets yand the probability
distribution defined by these unnormalized log probabilities. The resulting cross-
entropy defines the cost JMLE. Minimizing this cross-entropy performs maximum
likelihood estimation of the classifier. However, to make this example more realistic,
we also include a regularization term. The total cost

J J= MLE+ λ

i,j

W(1)
i,j

2
+

i,j

W (2)
i,j

2

 (6.54)

consists of the cross-entropy and a weight decay term with coefficient λ. The
computational graph is illustrated in Fig. 6.11.

The computational graph for the gradient of this example is large enough that

it would be tedious to draw or to read. This demonstrates one of the benefits
of the back-propagation algorithm, which is that it can automatically generate
gradients that would be straightforward but tedious for a software engineer to
derive manually.

We can roughly trace out the behavior of the back-propagation algorithm
by looking at the forward propagation graph in Fig. 6.11. To train, we wish
to compute both ∇W (1)J and ∇W(2) J . There are two different paths leading
backward from J to the weights: one through the cross-entropy cost, and one
through the weight decay cost. The weight decay cost is relatively simple; it will
always contribute 2λW ()i to the gradient onW ()i .

219

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

XX W(1)W(1)

U(1)U(1)

matmul

HH

relu

U(3)U(3)

sqr
u(4)u(4)

sum

u(7)u(7)W(2)W(2)

U(2)U(2)

matmul

yy

JMLEJMLE

cross_entropy

U(5)U(5)
sqr

u(6)u(6)
sum

u(8)u(8)

JJ

+

⇥

+

Figure 6.11: The computational graph used to compute the cost used to train our example
of a single-layer MLP using the cross-entropy loss and weight decay.

The other path through the cross-entropy cost is slightly more complicated.
Let G be the gradient on the unnormalized log probabilities U (2) provided by
the cross_entropy operation. The back-propagation algorithm now needs to
explore two different branches. On the shorter branch, it adds HG to the
gradient on W (2), using the back-propagation rule for the second argument to
the matrix multiplication operation. The other branch corresponds to the longer
chain descending further along the network. First, the back-propagation algorithm
computes ∇HJ = GW (2) using the back-propagation rule for the first argument
to the matrix multiplication operation. Next, the relu operation uses its back-

propagation rule to zero out components of the gradient corresponding to entries
of U(1) that were less than . Let the result be called0 G . The last step of the
back-propagation algorithm is to use the back-propagation rule for the second
argument of the operation to addmatmul XG to the gradient onW (1).

After these gradients have been computed, it is the responsibility of the gradient
descent algorithm, or another optimization algorithm, to use these gradients to

update the parameters.

For the MLP, the computational cost is dominated by the cost of matrix
multiplication. During the forward propagation stage, we multiply by each weight

220

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

matrix, resulting in O(w) multiply-adds, wherew is the number of weights. During
the backward propagation stage, we multiply by the transpose of each weight
matrix, which has the same computational cost. The main memory cost of the
algorithm is that we need to store the input to the nonlinearity of the hidden layer.
This value is stored from the time it is computed until the backward pass has
returned to the same point. The memory cost is thus O(mnh), where m is the
number of examples in the minibatch and nh is the number of hidden units.

6.5.8 Complications

Our description of the back-propagation algorithm here is simpler than the imple-
mentations actually used in practice.

As noted above, we have restricted the definition of an operation to be a
function that returns a single tensor. Most software implementations need to

support operations that can return more than one tensor. For example, if we wish
to compute both the maximum value in a tensor and the index of that value, it is
best to compute both in a single pass through memory, so it is most efficient to
implement this procedure as a single operation with two outputs.

We have not described how to control the memory consumption of back-

propagation. Back-propagation often involves summation of many tensors together.

In the naive approach, each of these tensors would be computed separately, then
all of them would be added in a second step. The naive approach has an overly
high memory bottleneck that can be avoided by maintaining a single buffer and
adding each value to that buffer as it is computed.

Real-world implementations of back-propagation also need to handle various
data types, such as 32-bit floating point, 64-bit floating point, and integer values.
The policy for handling each of these types takes special care to design.

Some operations have undefined gradients, and it is important to track these

cases and determine whether the gradient requested by the user is undefined.

Various other technicalities make real-world differentiation more complicated.
These technicalities are not insurmountable, and this chapter has described the key
intellectual tools needed to compute derivatives, but it is important to be aware

that many more subtleties exist.

6.5.9 Differentiation outside the Deep Learning Community

The deep learning community has been somewhat isolated from the broader

computer science community and has largely developed its own cultural attitudes

221

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

concerning how to perform differentiation. More generally, the field of automatic
differentiation is concerned with how to compute derivatives algorithmically. The
back-propagation algorithm described here is only one approach to automatic
differentiation. It is a special case of a broader class of techniques called reverse
mode accumulation. Other approaches evaluate the subexpressions of the chain rule
in different orders. In general, determining the order of evaluation that results in
the lowest computational cost is a difficult problem. Finding the optimal sequence
of operations to compute the gradient is NP-complete (Naumann, 2008), in the
sense that it may require simplifying algebraic expressions into their least expensive

form.

For example, suppose we have variables p1, p2, . . . , pn representing probabilities
and variables z 1, z 2, . . . , zn representing unnormalized log probabilties. Suppose
we define

qi =
exp(zi)
iexp(zi)

, (6.55)

where we build the softmax function out of exponentiation, summation and division
operations, and construct a cross-entropy loss J = −

ip i log qi. A human

mathematician can observe that the derivative of j with respect to zi takes a very

simple form: qk− pk . The back-propagation algorithm is not capable of simplifying

the gradient this way, and will instead explicitly propagate gradients through all of
the logarithm and exponentiation operations in the original graph. Some software
libraries such as Theano (Bergstra , 2010; Bastien , 2012) are able toet al. et al.
perform some kinds of algebraic substitution to improve over the graph proposed
by the pure back-propagation algorithm.

When the forward graph G has a single output node and each partial derivative
∂u()i

∂u()j can be computed with a constant amount of computation, back-propagation
guarantees that the number of computations for the gradient computation is of

the same order as the number of computations for the forward computation: this

can be seen in Algorithm 6.2 because each local partial derivative ∂u()i

∂u()j
needs

to be computed only once along with an associated multiplication and addition
for the recursive chain-rule formulation (Eq. 6.49). The overall computation is
therefore O(# edges). However, it can potentially be reduced by simplifying the

computational graph constructed by back-propagation, and this is an NP-complete
task. Implementations such as Theano and TensorFlow use heuristics based on
matching known simplification patterns in order to iteratively attempt to simplify
the graph. We only defined back-propagation for the computation of a gradient of a
scalar output but back-propagation can be extended to compute a Jacobian (either
of k different scalar nodes in the graph, or of a tensor-valued node containing k
values). A naive implementation may then need k times more computation: for

222

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

each scalar internal node in the original forward graph, the naive implementation
computes k gradients instead of a single gradient. When the number of outputs
of the graph is larger than the number of inputs, it is sometimes preferable to
use another form of automatic differentation called forward mode accumulation.
Forward mode computation has been proposed for obtaining real-time computation
of gradients in recurrent networks, for example (Williams and Zipser, 1989). This
also avoids the need to store the values and gradients for the whole graph, trading
off computational efficiency for memory. The relationship between forward mode
and backward mode is analogous to the relationship between left-multiplying versus

right-multiplying a sequence of matrices, such as

ABCD, (6.56)

where the matrices can be thought of as Jacobian matrices. For example, if D

is a column vector while A has many rows, this corresponds to a graph with a
single output and many inputs, and starting the multiplications from the end
and going backwards only requires matrix-vector products. This corresponds to
the backward mode. Instead, starting to multiply from the left would involve a
series of matrix-matrix products, which makes the whole computation much more

expensive. However, if A has fewer rows than D has columns, it is cheaper to run
the multiplications left-to-right, corresponding to the forward mode.

In many communities outside of machine learning, it is more common to
implement differentiation software that acts directly on traditional programming

language code, such as Python or C code, and automatically generates programs
that different functions written in these languages. In the deep learning community,
computational graphs are usually represented by explicit data structures created by
specialized libraries. The specialized approach has the drawback of requiring the

library developer to define the bpropmethods for every operation and limiting the
user of the library to only those operations that have been defined. However, the
specialized approach also has the benefit of allowing customized back-propagation
rules to be developed for each operation, allowing the developer to improve speed

or stability in non-obvious ways that an automatic procedure would presumably
be unable to replicate.

Back-propagation is therefore not the only way or the optimal way of computing

the gradient, but it is a very practical method that continues to serve the deep
learning community very well. In the future, differentiation technology for deep
networks may improve as deep learning practitioners become more aware of advances

in the broader field of automatic differentiation.

223

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

6.5.10 Higher-Order Derivatives

Some software frameworks support the use of higher-order derivatives. Among the
deep learning software frameworks, this includes at least Theano and TensorFlow.
These libraries use the same kind of data structure to describe the expressions for
derivatives as they use to describe the original function being differentiated. This

means that the symbolic differentiation machinery can be applied to derivatives.

In the context of deep learning, it is rare to compute a single second derivative
of a scalar function. Instead, we are usually interested in properties of the Hessian

matrix. If we have a function f :Rn → R, then the Hessian matrix is of size n n× .
In typical deep learning applications, n will be the number of parameters in the
model, which could easily number in the billions. The entire Hessian matrix is
thus infeasible to even represent.

Instead of explicitly computing the Hessian, the typical deep learning approach
is to use Krylov methods. Krylov methods are a set of iterative techniques for
performing various operations like approximately inverting a matrix or finding
approximations to its eigenvectors or eigenvalues, without using any operation
other than matrix-vector products.

In order to use Krylov methods on the Hessian, we only need to be able to
compute the product between the Hessian matrix H and an arbitrary vector v. A

straightforward technique (Christianson, 1992) for doing so is to compute

Hv = ∇x

(∇xf x()) v

. (6.57)

Both of the gradient computations in this expression may be computed automati-
cally by the appropriate software library. Note that the outer gradient expression
takes the gradient of a function of the inner gradient expression.

If v is itself a vector produced by a computational graph, it is important to
specify that the automatic differentiation software should not differentiate through

the graph that produced .v

While computing the Hessian is usually not advisable, it is possible to do with
Hessian vector products. One simply computes He()i for all i= 1 , . . . , n, where

e ()i is the one-hot vector with e()ii = 1 and all other entries equal to 0.

6.6 Historical Notes

Feedforward networks can be seen as efficient nonlinear function approximators
based on using gradient descent to minimize the error in a function approximation.

224

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

From this point of view, the modern feedforward network is the culmination of
centuries of progress on the general function approximation task.

The chain rule that underlies the back-propagation algorithm was invented
in the 17th century (Leibniz, 1676; L’Hôpital, 1696). Calculus and algebra have
long been used to solve optimization problems in closed form, but gradient descent
was not introduced as a technique for iteratively approximating the solution to
optimization problems until the 19th century (Cauchy, 1847).

Beginning in the 1940s, these function approximation techniques were used to

motivate machine learning models such as the perceptron. However, the earliest
models were based on linear models. Critics including Marvin Minsky pointed
out several of the flaws of the linear model family, such as it inability to learn the
XOR function, which led to a backlash against the entire neural network approach.

Learning nonlinear functions required the development of a multilayer per-

ceptron and a means of computing the gradient through such a model. Efficient
applications of the chain rule based on dynamic programming began to appear in the
1960s and 1970s, mostly for control applications (Kelley, 1960; Bryson and Denham,
1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) but also for sensitivity
analysis (Linnainmaa, 1976). Werbos (1981) proposed applying these techniques

to training artificial neural networks. The idea was finally developed in practice
after being independently rediscovered in different ways (LeCun, 1985; Parker,
1985; Rumelhart , 1986a). The booket al. Parallel Distributed Processing presented
the results of some of the first successful experiments with back-propagation in a
chapter (Rumelhart , 1986b) that contributed greatly to the popularizationet al.

of back-propagation and initiated a very active period of research in multi-layer

neural networks. However, the ideas put forward by the authors of that book
and in particular by Rumelhart and Hinton go much beyond back-propagation.
They include crucial ideas about the possible computational implementation of
several central aspects of cognition and learning, which came under the name of
“connectionism” because of the importance given the connections between neurons
as the locus of learning and memory. In particular, these ideas include the notion
of distributed representation.

Following the success of back-propagation, neural network research gained pop-
ularity and reached a peak in the early 1990s. Afterwards, other machine learning
techniques became more popular until the modern deep learning renaissance that

began in 2006.

The core ideas behind modern feedforward networks have not changed sub-
stantially since the 1980s. The same back-propagation algorithm and the same
approaches to gradient descent are still in use. Most of the improvement in neural

225

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

network performance from 1986 to 2015 can be attributed to two factors. First,
larger datasets have reduced the degree to which statistical generalization is a
challenge for neural networks. Second, neural networks have become much larger,
due to more powerful computers, and better software infrastructure. However, a
small number of algorithmic changes have improved the performance of neural
networks noticeably.

One of these algorithmic changes was the replacement of mean squared error
with the cross-entropy family of loss functions. Mean squared error was popular in
the 1980s and 1990s, but was gradually replaced by cross-entropy losses and the

principle of maximum likelihood as ideas spread between the statistics community
and the machine learning community. The use of cross-entropy losses greatly
improved the performance of models with sigmoid and softmax outputs, which
had previously suffered from saturation and slow learning when using the mean
squared error loss.

The other major algorithmic change that has greatly improved the performance
of feedforward networks was the replacement of sigmoid hidden units with piecewise
linear hidden units, such as rectified linear units. Rectified linear units had been
avoided due to a somewhat superstitious belief that activation functions with
non-differentiable points must be avoided. This began to change in about 2009.
Jarrett (2009) observed that “using a rectifying nonlinearity is the single mostet al.

important factor in improving the performance of a recognition system” among
several different factors of neural network architecture design.

For small datasets, Jarrett (2009) observed that using rectifying non-et al.

linearities is even more important than learning the weights of the hidden layers.

Random weights are sufficient to propagate useful information through a rectified
linear network, allowing the classifier layer at the top to learn how to map different
feature vectors to class identities.

When more data is available, learning begins to extract enough useful knowledge
to exceed the performance of randomly chosen parameters. Glorot (2011a)et al.
showed that learning is far easier in deep rectified linear networks than in deep
networks that have curvature or two-sided saturation in their activation functions.

Rectified linear units are also of historical interest because they show that
neuroscience has continued to have an influence on the development of deep

learning algorithms. Glorot (2011a) motivate rectified linear units fromet al.
biological considerations. The half-rectifying nonlinearity was intended to capture

these properties of biological neurons: 1) For some inputs, biological neurons are
completely inactive. 2) For some inputs, a biological neuron’s output is proportional
to its input. 3) Most of the time, biological neurons operate in the regime where

226

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

they are inactive (i.e., they should have sparse activations).

When the modern resurgence of deep learning began in 2006, feedforward
networks continued to have a bad reputation. From about 2006-2012, it was widely
believed that feedforward networks would not perform well unless they were assisted
by other models, such as probabilistic models. Today, it is now known that with the
right resources and engineering practices, feedforward networks perform very well.
Today, gradient-based learning in feedforward networks is used as a tool to develop
probabilistic models, such as the variational autoencoder and generative adversarial
networks, described in Chapter 20. Rather than being viewed as an unreliable

technology that must be supported by other techniques, gradient-based learning in
feedforward networks has been viewed since 2012 as a powerful technology that
may be applied to many other machine learning tasks. In 2006, the community
used unsupervised learning to support supervised learning, and now, ironically, it
is more common to use supervised learning to support unsupervised learning.

Feedforward networks continue to have unfulfilled potential. In the future, we
expect they will be applied to many more tasks, and that advances in optimization
algorithms and model design will improve their performance even further. This
chapter has primarily described the neural network family of models. In the
subsequent chapters, we turn to how to use these models—how to regularize and
train them.

227

