
Chapter 1

Introduction

Inventors have long dreamed of creating machines that think. Ancient Greek myths
tell of intelligent objects, such as animated statues of human beings and tables
that arrive full of food and drink when called.

When programmable computers were first conceived, people wondered whether

they might become intelligent, over a hundred years before one was built (Lovelace,
1842). Today, artificial intelligence (AI) is a thriving field with many practical
applications and active research topics. We look to intelligent software to automate
routine labor, understand speech or images, make diagnoses in medicine and
support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules. The true challenge to artificial intelligence proved to be solving
the tasks that are easy for people to perform but hard for people to describe
formally—problems that we solve intuitively, that feel automatic, like recognizing

spoken words or faces in images.

This book is about a solution to these more intuitive problems. This solution is
to allow computers to learn from experience and understand the world in terms of a
hierarchy of concepts, with each concept defined in terms of its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all of the knowledge that the computer
needs. The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
concepts are built on top of each other, the graph is deep, with many layers. For
this reason, we call this approach to AI deep learning.
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Many of the early successes of AI took place in relatively sterile and formal
environments and did not require computers to have much knowledge about
the world. For example, IBM’s Deep Blue chess-playing system defeated world
champion Garry Kasparov in 1997 (Hsu, 2002). Chess is of course a very simple
world, containing only sixty-four locations and thirty-two pieces that can move
in only rigidly circumscribed ways. Devising a successful chess strategy is a
tremendous accomplishment, but the challenge is not due to the difficulty of
describing the set of chess pieces and allowable moves to the computer. Chess
can be completely described by a very brief list of completely formal rules, easily

provided ahead of time by the programmer.

Ironically, abstract and formal tasks that are among the most difficult mental
undertakings for a human being are among the easiest for a computer. Computers
have long been able to defeat even the best human chess player, but are only
recently matching some of the abilities of average human beings to recognize objects
or speech. A person’s everyday life requires an immense amount of knowledge
about the world. Much of this knowledge is subjective and intuitive, and therefore
difficult to articulate in a formal way. Computers need to capture this same
knowledge in order to behave in an intelligent way. One of the key challenges in
artificial intelligence is how to get this informal knowledge into a computer.

Several artificial intelligence projects have sought to hard-code knowledge about

the world in formal languages. A computer can reason about statements in these
formal languages automatically using logical inference rules. This is known as the
knowledge base approach to artificial intelligence. None of these projects has led to
a major success. One of the most famous such projects is Cyc (Lenat and Guha,
1989). Cyc is an inference engine and a database of statements in a language
called CycL. These statements are entered by a staff of human supervisors. It is an
unwieldy process. People struggle to devise formal rules with enough complexity
to accurately describe the world. For example, Cyc failed to understand a story
about a person named Fred shaving in the morning (Linde, 1992). Its inference
engine detected an inconsistency in the story: it knew that people do not have
electrical parts, but because Fred was holding an electric razor, it believed the

entity “FredWhileShaving” contained electrical parts. It therefore asked whether
Fred was still a person while he was shaving.

The difficulties faced by systems relying on hard-coded knowledge suggest that
AI systems need the ability to acquire their own knowledge, by extracting patterns
from raw data. This capability is known as machine learning. The introduction
of machine learning allowed computers to tackle problems involving knowledge
of the real world and make decisions that appear subjective. A simple machine
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learning algorithm called logistic regression can determine whether to recommend
cesarean delivery (Mor-Yosef , 1990). A simple machine learning algorithmet al.
called can separate legitimate e-mail from spam e-mail.naive Bayes

The performance of these simple machine learning algorithms depends heavily
on the representation of the data they are given. For example, when logistic
regression is used to recommend cesarean delivery, the AI system does not examine
the patient directly. Instead, the doctor tells the system several pieces of relevant
information, such as the presence or absence of a uterine scar. Each piece of
information included in the representation of the patient is known as a feature.

Logistic regression learns how each of these features of the patient correlates with
various outcomes. However, it cannot influence the way that the features are
defined in any way. If logistic regression was given an MRI scan of the patient,
rather than the doctor’s formalized report, it would not be able to make useful
predictions. Individual pixels in an MRI scan have negligible correlation with any
complications that might occur during delivery.

This dependence on representations is a general phenomenon that appears
throughout computer science and even daily life. In computer science, opera-
tions such as searching a collection of data can proceed exponentially faster if
the collection is structured and indexed intelligently. People can easily perform
arithmetic on Arabic numerals, but find arithmetic on Roman numerals much

more time-consuming. It is not surprising that the choice of representation has an
enormous effect on the performance of machine learning algorithms. For a simple
visual example, see Fig. 1.1.

Many artificial intelligence tasks can be solved by designing the right set of
features to extract for that task, then providing these features to a simple machine
learning algorithm. For example, a useful feature for speaker identification from
sound is an estimate of the size of speaker’s vocal tract. It therefore gives a strong
clue as to whether the speaker is a man, woman, or child.

However, for many tasks, it is difficult to know what features should be extracted.
For example, suppose that we would like to write a program to detect cars in
photographs. We know that cars have wheels, so we might like to use the presence

of a wheel as a feature. Unfortunately, it is difficult to describe exactly what a
wheel looks like in terms of pixel values. A wheel has a simple geometric shape but
its image may be complicated by shadows falling on the wheel, the sun glaring off
the metal parts of the wheel, the fender of the car or an object in the foreground
obscuring part of the wheel, and so on.

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. (Figure produced in collaboration with David Warde-Farley)

This approach is known as representation learning. Learned representations often
result in much better performance than can be obtained with hand-designed
representations. They also allow AI systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that converts
the input data into a different representation, and a decoder function that converts
the new representation back into the original format. Autoencoders are trained to
preserve as much information as possible when an input is run through the encoder

and then the decoder, but are also trained to make the new representation have
various nice properties. Different kinds of autoencoders aim to achieve different
kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the that explain the observed data. In this context,factors of variation
we use the word “factors” simply to refer to separate sources of influence; the factors
are usually not combined by multiplication. Such factors are often not quantities
that are directly observed. Instead, they may exist either as unobserved objects
or unobserved forces in the physical world that affect observable quantities. They
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may also exist as constructs in the human mind that provide useful simplifying
explanations or inferred causes of the observed data. They can be thought of as
concepts or abstractions that help us make sense of the rich variability in the data.
When analyzing a speech recording, the factors of variation include the speaker’s
age, their sex, their accent and the words that they are speaking. When analyzing
an image of a car, the factors of variation include the position of the car, its color,
and the angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence applications
is that many of the factors of variation influence every single piece of data we are

able to observe. The individual pixels in an image of a red car might be very close
to black at night. The shape of the car’s silhouette depends on the viewing angle.
Most applications require us to the factors of variation and discard thedisentangle
ones that we do not care about.

Of course, it can be very difficult to extract such high-level, abstract features
from raw data. Many of these factors of variation, such as a speaker’s accent,
can be identified only using sophisticated, nearly human-level understanding of
the data. When it is nearly as difficult to obtain a representation as to solve the
original problem, representation learning does not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by introduc-
ing representations that are expressed in terms of other, simpler representations.

Deep learning allows the computer to build complex concepts out of simpler con-
cepts. Fig. 1.2 shows how a deep learning system can represent the concept of an
image of a person by combining simpler concepts, such as corners and contours,
which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network or multilayer perceptron (MLP). A multilayer perceptron is just a mathe-
matical function mapping some set of input values to output values. The function
is formed by composing many simpler functions. We can think of each application
of a different mathematical function as providing a new representation of the input.

The idea of learning the right representation for the data provides one perspec-
tive on deep learning. Another perspective on deep learning is that depth allows the

computer to learn a multi-step computer program. Each layer of the representation
can be thought of as the state of the computer’s memory after executing another
set of instructions in parallel. Networks with greater depth can execute more
instructions in sequence. Sequential instructions offer great power because later
instructions can refer back to the results of earlier instructions. According to this
view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the , so named because it contains the variables that wevisible layer
are able to observe. Then a series of extracts increasingly abstract featureshidden layers
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
σ(wTx), where σ is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may be
drawn as a flowchart with different depths depending on which functions we allow
to be used as individual steps in the flowchart. Fig. 1.3 illustrates how this choice

of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth
of the flowchart of the computations needed to compute the representation of
each concept may be much deeper than the graph of the concepts themselves.
This is because the system’s understanding of the simpler concepts can be refined

7



CHAPTER 1. INTRODUCTION

given information about the more complex concepts. For example, an AI system
observing an image of a face with one eye in shadow may initially only see one eye.
After detecting that a face is present, it can then infer that a second eye is probably
present as well. In this case, the graph of concepts only includes two layers—a
layer for eyes and a layer for faces—but the graph of computations includes 2n
layers if we refine our estimate of each concept given the other times.n

Because it is not always clear which of these two views—the depth of the
computational graph, or the depth of the probabilistic modeling graph—is most
relevant, and because different people choose different sets of smallest elements

from which to construct their graphs, there is no single correct value for the
depth of an architecture, just as there is no single correct value for the length of
a computer program. Nor is there a consensus about how much depth a model
requires to qualify as “deep.” However, deep learning can safely be regarded as the
study of models that either involve a greater amount of composition of learned
functions or learned concepts than traditional machine learning does.

To summarize, deep learning, the subject of this book, is an approach to AI.
Specifically, it is a type of machine learning, a technique that allows computer
systems to improve with experience and data. According to the authors of this
book, machine learning is the only viable approach to building AI systems that
can operate in complicated, real-world environments. Deep learning is a particular

kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations computed in terms
of less abstract ones. Fig. 1.4 illustrates the relationship between these different
AI disciplines. Fig. 1.5 gives a high-level schematic of how each works.

1.1 Who Should Read This Book?

This book can be useful for a variety of readers, but we wrote it with two main

target audiences in mind. One of these target audiences is university students

(undergraduate or graduate) learning about machine learning, including those who
are beginning a career in deep learning and artificial intelligence research. The
other target audience is software engineers who do not have a machine learning
or statistics background, but want to rapidly acquire one and begin using deep
learning in their product or platform. Deep learning has already proven useful in
many software disciplines including computer vision, speech and audio processing,
natural language processing, robotics, bioinformatics and chemistry, video games,
search engines, online advertising and finance.
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Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.

9



CHAPTER 1. INTRODUCTION

Input

Hand-

designed 

program

Output

Input

Hand-

designed 

features

Mapping from 

features

Output

Input

Features

Mapping from 

features

Output

Input

Simple 

features

Mapping from 

features

Output

Additional 

layers of more 

abstract 

features

Rule-based

systems

Classic

machine

learning

Representation

learning

Deep

learning

Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each
other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.

10



CHAPTER 1. INTRODUCTION

This book has been organized into three parts in order to best accommodate a
variety of readers. Part I introduces basic mathematical tools and machine learning
concepts. Part II describes the most established deep learning algorithms that are
essentially solved technologies. Part III describes more speculative ideas that are
widely believed to be important for future research in deep learning.

Readers should feel free to skip parts that are not relevant given their interests
or background. Readers familiar with linear algebra, probability, and fundamental
machine learning concepts can skip Part I, for example, while readers who just want
to implement a working system need not read beyond Part II. To help choose which

chapters to read, Fig. 1.6 provides a flowchart showing the high-level organization
of the book.

We do assume that all readers come from a computer science background. We
assume familiarity with programming, a basic understanding of computational
performance issues, complexity theory, introductory level calculus and some of the
terminology of graph theory.

1.2 Historical Trends in Deep Learning

It is easiest to understand deep learning with some historical context. Rather than

providing a detailed history of deep learning, we identify a few key trends:

• Deep learning has had a long and rich history, but has gone by many names
reflecting different philosophical viewpoints, and has waxed and waned in
popularity.

• Deep learning has become more useful as the amount of available training
data has increased.

• Deep learning models have grown in size over time as computer hardware
and software infrastructure for deep learning has improved.

• Deep learning has solved increasingly complicated applications with increasing
accuracy over time.

1.2.1 The Many Names and Changing Fortunes of Neural Net-
works

We expect that many readers of this book have heard of deep learning as an

exciting new technology, and are surprised to see a mention of “history” in a book
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Figure 1.6: The high-level organization of the book. An arrow from one chapter to another
indicates that the former chapter is prerequisite material for understanding the latter.
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about an emerging field. In fact, deep learning dates back to the 1940s. Deep
learning only appears to be new, because it was relatively unpopular for several
years preceding its current popularity, and because it has gone through many
different names, and has only recently become called “deep learning.” The field
has been rebranded many times, reflecting the influence of different researchers
and different perspectives.

A comprehensive history of deep learning is beyond the scope of this textbook.
However, some basic context is useful for understanding deep learning. Broadly
speaking, there have been three waves of development of deep learning: deep learn-

ing known as cybernetics in the 1940s–1960s, deep learning known as connectionism
in the 1980s–1990s, and the current resurgence under the name deep learning
beginning in 2006. This is quantitatively illustrated in Fig. 1.7.

1940 1950 1960 1970 1980 1990 2000
0.000000 %

0.000050 %

0.000100 %

0.000150 %

0.000200 %

0.000250 %

cybernetics

(connectionism + neural networks)

Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research. The first wave started with cybernetics in the 1940s–1960s, with the devel-
opment of theories of biological learning (McCulloch and Pitts, 1943; Hebb, 1949) and
implementations of the first models such as the perceptron (Rosenblatt, 1958) allowing the
training of a single neuron. The second wave started with the connectionist approach of
the 1980–1995 period, with back-propagation (Rumelhart et al., 1986a) to train a neural
network with one or two hidden layers. The current and third wave, deep learning, started
around 2006 (Hinton , 2006; Bengio , 2007; Ranzato , 2007a), which allowedet al. et al. et al.
us to train very deep networks, is not shown for lack of books on the subject. The figure
shows on the vertical axis the Google booksn-grams relative counts for “cybernetics” (solid
curve) and “connectionism” or “neural networks” (dashed curve), for years (horizontal axis)
between 1940 and 2004. Keep in mind that the scientific advances tend to happen years
before they are discussed in many places in books, hence these curves incorporate a lag of
several years compared to the scientific activity itself.

Some of the earliest learning algorithms we recognize today were intended to be
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computational models of biological learning, i.e. models of how learning happens
or could happen in the brain. As a result, one of the names that deep learning has
gone by is artificial neural networks (ANNs). The corresponding perspective on
deep learning models is that they are engineered systems inspired by the biological
brain (whether the human brain or the brain of another animal). The neural
perspective on deep learning is motivated by two main ideas. One idea is that
the brain provides a proof by example that intelligent behavior is possible, and a
conceptually straightforward path to building intelligence is to reverse engineer the
computational principles behind the brain and duplicate its functionality. Another

perspective is that it would be deeply interesting to understand the brain and the
principles that underlie human intelligence, so machine learning models that shed
light on these basic scientific questions are useful apart from their ability to solve
engineering applications.

The modern term “deep learning” goes beyond the neuroscientific perspective
on the current breed of machine learning models. It appeals to a more general
principle of learning multiple levels of composition, which can be applied in machine
learning frameworks that are not necessarily neurally inspired.

The earliest predecessors of modern deep learning were simple linear models
motivated from a neuroscientific perspective. These models were designed to
take a set of n input values x1, . . . , xn and associate them with an output y.

These models would learn a set of weights w1, . . . , wn and compute their output
f(x w, ) = x 1w1 + · · ·+ xnwn . This first wave of neural networks research was
known as cybernetics, as illustrated in Fig. 1.7.

The McCulloch-Pitts Neuron (McCulloch and Pitts, 1943) was an early model
of brain function. This linear model could recognize two different categories of
inputs by testing whether f(x w, ) is positive or negative. Of course, for the model
to correspond to the desired definition of the categories, the weights needed to be
set correctly. These weights could be set by the human operator. In the 1950s,
the perceptron (Rosenblatt, 1958, 1962) became the first model that could learn

the weights defining the categories given examples of inputs from each category.
The adaptive linear element (ADALINE), which dates from about the same time,
simply returned the value of f(x) itself to predict a real number (Widrow and

Hoff, 1960), and could also learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of
machine learning. The training algorithm used to adapt the weights of the ADA-
LINE was a special case of an algorithm called stochastic gradient descent. Slightly
modified versions of the stochastic gradient descent algorithm remain the dominant
training algorithms for deep learning models today.
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Models based on the f(x w, ) used by the perceptron and ADALINE are called
linear models. These models remain some of the most widely used machine learning
models, though in many cases they are trained in different ways than the original
models were trained.

Linear models have many limitations. Most famously, they cannot learn the
XOR function, where f ([0,1] ,w) = 1 and f([1, 0],w) = 1 but f([1, 1],w) = 0
and f ([0,0],w) = 0. Critics who observed these flaws in linear models caused
a backlash against biologically inspired learning in general (Minsky and Papert,
1969). This was the first major dip in the popularity of neural networks.

Today, neuroscience is regarded as an important source of inspiration for deep
learning researchers, but it is no longer the predominant guide for the field.

The main reason for the diminished role of neuroscience in deep learning
research today is that we simply do not have enough information about the brain
to use it as a guide. To obtain a deep understanding of the actual algorithms used
by the brain, we would need to be able to monitor the activity of (at the very

least) thousands of interconnected neurons simultaneously. Because we are not
able to do this, we are far from understanding even some of the most simple and
well-studied parts of the brain (Olshausen and Field, 2005).

Neuroscience has given us a reason to hope that a single deep learning algorithm

can solve many different tasks. Neuroscientists have found that ferrets can learn to
“see” with the auditory processing region of their brain if their brains are rewired
to send visual signals to that area (Von Melchner , 2000). This suggests thatet al.
much of the mammalian brain might use a single algorithm to solve most of the
different tasks that the brain solves. Before this hypothesis, machine learning
research was more fragmented, with different communities of researchers studying
natural language processing, vision, motion planning and speech recognition. Today,
these application communities are still separate, but it is common for deep learning
research groups to study many or even all of these application areas simultaneously.

We are able to draw some rough guidelines from neuroscience. The basic idea of
having many computational units that become intelligent only via their interactions
with each other is inspired by the brain. The Neocognitron (Fukushima, 1980)

introduced a powerful model architecture for processing images that was inspired
by the structure of the mammalian visual system and later became the basis
for the modern convolutional network (LeCun , 1998b), as we will see inet al.
Sec. 9.10. Most neural networks today are based on a model neuron called the
rectified linear unit. These units were developed from a variety of viewpoints,
with Nair and Hinton (2010) and Glorot (2011a) citing neuroscience as anet al.
influence, and Jarrett (2009) citing more engineering-oriented influences.et al.
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While neuroscience is an important source of inspiration, it need not be taken
as a rigid guide. We know that actual neurons compute very different functions
than modern rectified linear units, but greater neural realism has not yet led to
an improvement in machine learning performance. Also, while neuroscience has
successfully inspired several neural network architectures, we do not yet know
enough about biological learning for neuroscience to offer much guidance for the
learning algorithms we use to train these architectures.

Media accounts often emphasize the similarity of deep learning to the brain.
While it is true that deep learning researchers are more likely to cite the brain as an

influence than researchers working in other machine learning fields such as kernel
machines or Bayesian statistics, one should not view deep learning as an attempt
to simulate the brain. Modern deep learning draws inspiration from many fields,
especially applied math fundamentals like linear algebra, probability, information
theory, and numerical optimization. While some deep learning researchers cite
neuroscience as an important source of inspiration, others are not concerned with
neuroscience at all.

It is worth noting that the effort to understand how the brain works on
an algorithmic level is alive and well. This endeavor is primarily known as
“computational neuroscience” and is a separate field of study from deep learning.
It is common for researchers to move back and forth between both fields. The

field of deep learning is primarily concerned with how to build computer systems
that are able to successfully solve tasks requiring intelligence, while the field of
computational neuroscience is primarily concerned with building more accurate
models of how the brain actually works.

In the 1980s, the second wave of neural network research emerged in great part
via a movement called connectionism parallel distributed processingor (Rumelhart
et al., 1986c). Connectionism arose in the context of cognitive science. Cognitive
science is an interdisciplinary approach to understanding the mind, combining
multiple different levels of analysis. During the early 1980s, most cognitive scientists

studied models of symbolic reasoning. Despite their popularity, symbolic models
were difficult to explain in terms of how the brain could actually implement them
using neurons. The connectionists began to study models of cognition that could

actually be grounded in neural implementations, reviving many ideas dating back
to the work of psychologist Donald Hebb in the 1940s (Hebb, 1949).

The central idea in connectionism is that a large number of simple computational
units can achieve intelligent behavior when networked together. This insight
applies equally to neurons in biological nervous systems and to hidden units in
computational models.
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Several key concepts arose during the connectionism movement of the 1980s
that remain central to today’s deep learning.

One of these concepts is that of distributed representation. This is the idea that
each input to a system should be represented by many features, and each feature
should be involved in the representation of many possible inputs. For example,
suppose we have a vision system that can recognize cars, trucks, and birds and
these objects can each be red, green, or blue. One way of representing these inputs
would be to have a separate neuron or hidden unit that activates for each of the
nine possible combinations: red truck, red car, red bird, green truck, and so on.

This requires nine different neurons, and each neuron must independently learn
the concept of color and object identity. One way to improve on this situation is
to use a distributed representation, with three neurons describing the color and
three neurons describing the object identity. This requires only six neurons total
instead of nine, and the neuron describing redness is able to learn about redness
from images of cars, trucks and birds, not only from images of one specific category
of objects. The concept of distributed representation is central to this book, and
will be described in greater detail in Chapter 15.

Another major accomplishment of the connectionist movement was the suc-
cessful use of back-propagation to train deep neural networks with internal repre-
sentations and the popularization of the back-propagation algorithm (Rumelhart

et al., 1986a; LeCun, 1987). This algorithm has waxed and waned in popularity
but as of this writing is currently the dominant approach to training deep models.

During the 1990s, researchers made important advances in modeling sequences
with neural networks. Hochreiter (1991) and Bengio (1994) identified someet al.
of the fundamental mathematical difficulties in modeling long sequences, described
in Sec. 10.7. Hochreiter and Schmidhuber (1997) introduced the long short-term
memory or LSTM network to resolve some of these difficulties. Today, the LSTM
is widely used for many sequence modeling tasks, including many natural language
processing tasks at Google.

The second wave of neural networks research lasted until the mid-1990s. Ven-
tures based on neural networks and other AI technologies began to make unrealisti-

cally ambitious claims while seeking investments. When AI research did not fulfill
these unreasonable expectations, investors were disappointed. Simultaneously,
other fields of machine learning made advances. Kernel machines (Boser ,et al.
1992; Cortes and Vapnik, 1995; Schölkopf , 1999) and graphical models (Jor-et al.
dan, 1998) both achieved good results on many important tasks. These two factors
led to a decline in the popularity of neural networks that lasted until 2007.

During this time, neural networks continued to obtain impressive performance

17



CHAPTER 1. INTRODUCTION

on some tasks (LeCun , 1998c; Bengioet al. et al., 2001). The Canadian Institute
for Advanced Research (CIFAR) helped to keep neural networks research alive
via its Neural Computation and Adaptive Perception (NCAP) research initiative.
This program united machine learning research groups led by Geoffrey Hinton
at University of Toronto, Yoshua Bengio at University of Montreal, and Yann
LeCun at New York University. The CIFAR NCAP research initiative had a
multi-disciplinary nature that also included neuroscientists and experts in human
and computer vision.

At this point in time, deep networks were generally believed to be very difficult

to train. We now know that algorithms that have existed since the 1980s work
quite well, but this was not apparent circa 2006. The issue is perhaps simply that
these algorithms were too computationally costly to allow much experimentation
with the hardware available at the time.

The third wave of neural networks research began with a breakthrough in
2006. Geoffrey Hinton showed that a kind of neural network called a deep belief
network could be efficiently trained using a strategy called greedy layer-wise
pretraining (Hinton , 2006), which will be described in more detail in Sec.et al.
15.1. The other CIFAR-affiliated research groups quickly showed that the same
strategy could be used to train many other kinds of deep networks (Bengio ,et al.
2007; Ranzato et al., 2007a) and systematically helped to improve generalization

on test examples. This wave of neural networks research popularized the use of the
term deep learning to emphasize that researchers were now able to train deeper
neural networks than had been possible before, and to focus attention on the
theoretical importance of depth (Bengio and LeCun, 2007; Delalleau and Bengio,
2011; Pascanu , 2014a; Montufar , 2014). At this time, deep neuralet al. et al.
networks outperformed competing AI systems based on other machine learning
technologies as well as hand-designed functionality. This third wave of popularity
of neural networks continues to the time of this writing, though the focus of deep
learning research has changed dramatically within the time of this wave. The
third wave began with a focus on new unsupervised learning techniques and the
ability of deep models to generalize well from small datasets, but today there is

more interest in much older supervised learning algorithms and the ability of deep
models to leverage large labeled datasets.

1.2.2 Increasing Dataset Sizes

One may wonder why deep learning has only recently become recognized as a
crucial technology though the first experiments with artificial neural networks were
conducted in the 1950s. Deep learning has been successfully used in commercial
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applications since the 1990s, but was often regarded as being more of an art than
a technology and something that only an expert could use, until recently. It is true
that some skill is required to get good performance from a deep learning algorithm.
Fortunately, the amount of skill required reduces as the amount of training data
increases. The learning algorithms reaching human performance on complex tasks
today are nearly identical to the learning algorithms that struggled to solve toy
problems in the 1980s, though the models we train with these algorithms have
undergone changes that simplify the training of very deep architectures. The most
important new development is that today we can provide these algorithms with

the resources they need to succeed. Fig. 1.8 shows how the size of benchmark
datasets has increased remarkably over time. This trend is driven by the increasing
digitization of society. As more and more of our activities take place on computers,
more and more of what we do is recorded. As our computers are increasingly
networked together, it becomes easier to centralize these records and curate them

into a dataset appropriate for machine learning applications. The age of “Big

Data” has made machine learning much easier because the key burden of statistical
estimation—generalizing well to new data after observing only a small amount
of data—has been considerably lightened. As of 2016, a rough rule of thumb
is that a supervised deep learning algorithm will generally achieve acceptable
performance with around 5,000 labeled examples per category, and will match or

exceed human performance when trained with a dataset containing at least 10
million labeled examples. Working successfully with datasets smaller than this is
an important research area, focusing in particular on how we can take advantage
of large quantities of unlabeled examples, with unsupervised or semi-supervised
learning.

1.2.3 Increasing Model Sizes

Another key reason that neural networks are wildly successful today after enjoying

comparatively little success since the 1980s is that we have the computational
resources to run much larger models today. One of the main insights of connection-
ism is that animals become intelligent when many of their neurons work together.

An individual neuron or small collection of neurons is not particularly useful.

Biological neurons are not especially densely connected. As seen in Fig. 1.10,
our machine learning models have had a number of connections per neuron that
was within an order of magnitude of even mammalian brains for decades.

In terms of the total number of neurons, neural networks have been astonishingly
small until quite recently, as shown in Fig. 1.11. Since the introduction of hidden
units, artificial neural networks have doubled in size roughly every 2.4 years. This
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of biologically-inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart , 1986b). In the 1980s and 1990s, machine learninget al.
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in Fig. 1.9) of scans of
handwritten numbers (LeCun , 1998c). In the first decade of the 2000s, moreet al.
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer ,et al.
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al. et al., 2014a), and the Sports-1M dataset (Karpathy , 2014). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown , 1990) and the WMT 2014 English to Frenchet al.
dataset (Schwenk, 2014) are typically far ahead of other dataset sizes.
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Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0-9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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growth is driven by faster computers with larger memory and by the availability
of larger datasets. Larger networks are able to achieve higher accuracy on more
complex tasks. This trend looks set to continue for decades. Unless new technologies
allow faster scaling, artificial neural networks will not have the same number of
neurons as the human brain until at least the 2050s. Biological neurons may
represent more complicated functions than current artificial neurons, so biological
neural networks may be even larger than this plot portrays.

In retrospect, it is not particularly surprising that neural networks with fewer
neurons than a leech were unable to solve sophisticated artificial intelligence prob-

lems. Even today’s networks, which we consider quite large from a computational
systems point of view, are smaller than the nervous system of even relatively
primitive vertebrate animals like frogs.

The increase in model size over time, due to the availability of faster CPUs, the
advent of general purpose GPUs, faster network connectivity and better software
infrastructure for distributed computing, is one of the most important trends in
the history of deep learning. This trend is generally expected to continue well into
the future.

1.2.4 Increasing Accuracy, Complexity and Real-World Impact

Since the 1980s, deep learning has consistently improved in its ability to provide
accurate recognition or prediction. Moreover, deep learning has consistently been
applied with success to broader and broader sets of applications.

The earliest deep models were used to recognize individual objects in tightly

cropped, extremely small images (Rumelhart , 1986a). Since then thereet al.
has been a gradual increase in the size of images neural networks could process.
Modern object recognition networks process rich high-resolution photographs and
do not have a requirement that the photo be cropped near the object to be

recognized (Krizhevsky et al., 2012). Similarly, the earliest networks could only
recognize two kinds of objects (or in some cases, the absence or presence of a single
kind of object), while these modern networks typically recognize at least 1,000

different categories of objects. The largest contest in object recognition is the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) held each year. A
dramatic moment in the meteoric rise of deep learning came when a convolutional
network won this challenge for the first time and by a wide margin, bringing

down the state-of-the-art top-5 error rate from 26.1% to 15.3% (Krizhevsky ,et al.

2012), meaning that the convolutional network produces a ranked list of possible
categories for each image and the correct category appeared in the first five entries
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla , 2006)et al.

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan , 2010)et al.

7. Distributed autoencoder (Le , 2012)et al.

8. Multi-GPU convolutional network (Krizhevsky , 2012)et al.

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy , 2014a)et al.
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of this list for all but 15.3% of the test examples. Since then, these competitions
are consistently won by deep convolutional nets, and as of this writing, advances
in deep learning have brought the latest top-5 error rate in this contest down to
3.6%, as shown in Fig. 1.12.

Deep learning has also had a dramatic impact on speech recognition. After
improving throughout the 1990s, the error rates for speech recognition stagnated
starting in about 2000. The introduction of deep learning (Dahl , 2010; Denget al.
et al. et al., 2010b; Seide , 2011; Hinton et al., 2012a) to speech recognition resulted
in a sudden drop of error rates, with some error rates cut in half. We will explore

this history in more detail in Sec. 12.3.

Deep networks have also had spectacular successes for pedestrian detection and
image segmentation (Sermanet , 2013; Farabet , 2013a; Couprie ,et al. et al. et al.
2013) and yielded superhuman performance in traffic sign classification (Ciresan
et al., 2012).

At the same time that the scale and accuracy of deep networks has increased,

so has the complexity of the tasks that they can solve. Goodfellow (2014d)et al.
showed that neural networks could learn to output an entire sequence of characters
transcribed from an image, rather than just identifying a single object. Previously,
it was widely believed that this kind of learning required labeling of the individual
elements of the sequence (Gülçehre and Bengio, 2013). Recurrent neural networks,

such as the LSTM sequence model mentioned above, are now used to model
relationships between sequences sequencesand other rather than just fixed inputs.
This sequence-to-sequence learning seems to be on the cusp of revolutionizing
another application: machine translation (Sutskever , 2014a; Bahdanau ,et al. et al.
2014).

This trend of increasing complexity has been pushed to its logical conclusion
with the introduction of neural Turing machines (Graves , 2014a) that learnet al.
to read from memory cells and write arbitrary content to memory cells. Such
neural networks can learn simple programs from examples of desired behavior. For
example, they can learn to sort lists of numbers given examples of scrambled and
sorted sequences. This self-programming technology is in its infancy, but in the

future could in principle be applied to nearly any task.

Another crowning achievement of deep learning is its extension to the domain
of reinforcement learning. In the context of reinforcement learning, an autonomous
agent must learn to perform a task by trial and error, without any guidance from
the human operator. DeepMind demonstrated that a reinforcement learning system
based on deep learning is capable of learning to play Atari video games, reaching
human-level performance on many tasks (Mnih et al., 2015). Deep learning has
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also significantly improved the performance of reinforcement learning for robotics
(Finn , 2015).et al.

Many of these applications of deep learning are highly profitable. Deep learning
is now used by many top technology companies including Google, Microsoft,
Facebook, IBM, Baidu, Apple, Adobe, Netflix, NVIDIA and NEC.

Advances in deep learning have also depended heavily on advances in software
infrastructure. Software libraries such as Theano (Bergstra , 2010; Bastienet al.
et al. et al., 2012), PyLearn2 (Goodfellow , 2013c), Torch (Collobert , 2011c),et al.

DistBelief (Dean , 2012a), Caffe (Jia, 2013), MXNet (Chenet al. et al., 2015), and
TensorFlow (Abadi , 2015) have all supported important research projects oret al.
commercial products.

Deep learning has also made contributions back to other sciences. Modern
convolutional networks for object recognition provide a model of visual processing
that neuroscientists can study (DiCarlo, 2013). Deep learning also provides useful
tools for processing massive amounts of data and making useful predictions in

scientific fields. It has been successfully used to predict how molecules will interact
in order to help pharmaceutical companies design new drugs (Dahl et al., 2014),
to search for subatomic particles (Baldi , 2014), and to automatically parseet al.
microscope images used to construct a 3-D map of the human brain (Knowles-
Barley , 2014). We expect deep learning to appear in more and more scientificet al.

fields in the future.

In summary, deep learning is an approach to machine learning that has drawn
heavily on our knowledge of the human brain, statistics and applied math as it
developed over the past several decades. In recent years, it has seen tremendous
growth in its popularity and usefulness, due in large part to more powerful com-
puters, larger datasets and techniques to train deeper networks. The years ahead
are full of challenges and opportunities to improve deep learning even further and
bring it to new frontiers.
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio , 1991)et al.

7. Mean field sigmoid belief network (Saul , 1996)et al.

8. LeNet-5 (LeCun , 1998b)et al.

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton , 2006)et al.

11. GPU-accelerated convolutional network (Chellapilla , 2006)et al.

12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina , 2009)et al.

14. Unsupervised convolutional network (Jarrett et al., 2009)

15. GPU-accelerated multilayer perceptron (Ciresan , 2010)et al.

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le , 2012)et al.

18. Multi-GPU convolutional network (Krizhevsky , 2012)et al.

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy , 2014a)et al.
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from Russakovsky
et al. et al.(2014b) and He (2015).
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