
Chapter 12

Applications

In this chapter, we describe how to use deep learning to solve applications in com-
puter vision, speech recognition, natural language processing, and other application
areas of commercial interest. We begin by discussing the large scale neural network
implementations required for most serious AI applications. Next, we review several

specific application areas that deep learning has been used to solve. While one
goal of deep learning is to design algorithms that are capable of solving a broad
variety of tasks, so far some degree of specialization is needed. For example, vision
tasks require processing a large number of input features (pixels) per example.
Language tasks require modeling a large number of possible values (words in the
vocabulary) per input feature.

12.1 Large Scale Deep Learning

Deep learning is based on the philosophy of connectionism: while an individual
biological neuron or an individual feature in a machine learning model is not

intelligent, a large population of these neurons or features acting together can
exhibit intelligent behavior. It truly is important to emphasize the fact that the
number of neurons must be large. One of the key factors responsible for the
improvement in neural network’s accuracy and the improvement of the complexity
of tasks they can solve between the 1980s and today is the dramatic increase in
the size of the networks we use. As we saw in Sec. 1.2.3, network sizes have grown
exponentially for the past three decades, yet artificial neural networks are only as
large as the nervous systems of insects.

Because the size of neural networks is of paramount importance, deep learning

445

CHAPTER 12. APPLICATIONS

requires high performance hardware and software infrastructure.

12.1.1 Fast CPU Implementations

Traditionally, neural networks were trained using the CPU of a single machine.
Today, this approach is generally considered insufficient. We now mostly use GPU

computing or the CPUs of many machines networked together. Before moving to
these expensive setups, researchers worked hard to demonstrate that CPUs could
not manage the high computational workload required by neural networks.

A description of how to implement efficient numerical CPU code is beyond
the scope of this book, but we emphasize here that careful implementation for
specific CPU families can yield large improvements. For example, in 2011, the best
CPUs available could run neural network workloads faster when using fixed-point
arithmetic rather than floating-point arithmetic. By creating a carefully tuned
fixed-point implementation, Vanhoucke (2011) obtained a 3et al. × speedup over
a strong floating-point system. Each new model of CPU has different performance
characteristics, so sometimes floating-point implementations can be faster too.

The important principle is that careful specialization of numerical computation
routines can yield a large payoff. Other strategies, besides choosing whether to use
fixed or floating point, include optimizing data structures to avoid cache misses
and using vector instructions. Many machine learning researchers neglect these
implementation details, but when the performance of an implementation restricts
the size of the model, the accuracy of the model suffers.

12.1.2 GPU Implementations

Most modern neural network implementations are based on graphics processing
units. Graphics processing units (GPUs) are specialized hardware components
that were originally developed for graphics applications. The consumer market for
video gaming systems spurred development of graphics processing hardware. The
performance characteristics needed for good video gaming systems turn out to be
beneficial for neural networks as well.

Video game rendering requires performing many operations in parallel quickly.
Models of characters and environments are specified in terms of lists of 3-D
coordinates of vertices. Graphics cards must perform matrix multiplication and
division on many vertices in parallel to convert these 3-D coordinates into 2-D
on-screen coordinates. The graphics card must then perform many computations

at each pixel in parallel to determine the color of each pixel. In both cases, the

446

CHAPTER 12. APPLICATIONS

computations are fairly simple and do not involve much branching compared to
the computational workload that a CPU usually encounters. For example, each
vertex in the same rigid object will be multiplied by the same matrix; there is no
need to evaluate an if statement per-vertex to determine which matrix to multiply
by. The computations are also entirely independent of each other, and thus may
be parallelized easily. The computations also involve processing massive buffers of
memory, containing bitmaps describing the texture (color pattern) of each object
to be rendered. Together, this results in graphics cards having been designed to
have a high degree of parallelism and high memory bandwidth, at the cost of

having a lower clock speed and less branching capability relative to traditional
CPUs.

Neural network algorithms require the same performance characteristics as the
real-time graphics algorithms described above. Neural networks usually involve
large and numerous buffers of parameters, activation values, and gradient values,
each of which must be completely updated during every step of training. These
buffers are large enough to fall outside the cache of a traditional desktop computer
so the memory bandwidth of the system often becomes the rate limiting factor.
GPUs offer a compelling advantage over CPUs due to their high memory bandwidth.
Neural network training algorithms typically do not involve much branching or
sophisticated control, so they are appropriate for GPU hardware. Since neural

networks can be divided into multiple individual “neurons” that can be processed
independently from the other neurons in the same layer, neural networks easily
benefit from the parallelism of GPU computing.

GPU hardware was originally so specialized that it could only be used for
graphics tasks. Over time, GPU hardware became more flexible, allowing custom
subroutines to be used to transform the coordinates of vertices or assign colors
to pixels. In principle, there was no requirement that these pixel values actually
be based on a rendering task. These GPUs could be used for scientific computing
by writing the output of a computation to a buffer of pixel values. Steinkrau
et al. (2005) implemented a two-layer fully connected neural network on a GPU
and reported a 3X speedup over their CPU-based baseline. Shortly thereafter,

Chellapilla (2006) demonstrated that the same technique could be used toet al.
accelerate supervised convolutional networks.

The popularity of graphics cards for neural network training exploded after the
advent of general purpose GPUs. These GP-GPUs could execute arbitrary code,
not just rendering subroutines. NVIDIA’s CUDA programming language provided
a way to write this arbitrary code in a C-like language. With their relatively

convenient programming model, massive parallelism, and high memory bandwidth,

447

CHAPTER 12. APPLICATIONS

GP-GPUs now offer an ideal platform for neural network programming. This
platform was rapidly adopted by deep learning researchers soon after it became
available (Raina , 2009; Ciresan , 2010).et al. et al.

Writing efficient code for GP-GPUs remains a difficult task best left to spe-
cialists. The techniques required to obtain good performance on GPU are very
different from those used on CPU. For example, good CPU-based code is usually
designed to read information from the cache as much as possible. On GPU, most
writable memory locations are not cached, so it can actually be faster to compute
the same value twice, rather than compute it once and read it back from memory.

GPU code is also inherently multi-threaded and the different threads must be
coordinated with each other carefully. For example, memory operations are faster
if they can be coalesced. Coalesced reads or writes occur when several threads can
each read or write a value that they need simultaneously, as part of a single memory
transaction. Different models of GPUs are able to coalesce different kinds of read
or write patterns. Typically, memory operations are easier to coalesce if among n
threads, thread i accesses byte i+ j of memory, and j is a multiple of some power
of 2. The exact specifications differ between models of GPU. Another common
consideration for GPUs is making sure that each thread in a group executes the
same instruction simultaneously. This means that branching can be difficult on
GPU. Threads are divided into small groups called . Each thread in a warpwarps

executes the same instruction during each cycle, so if different threads within the
same warp need to execute different code paths, these different code paths must
be traversed sequentially rather than in parallel.

Due to the difficulty of writing high performance GPU code, researchers should
structure their workflow to avoid needing to write new GPU code in order to test
new models or algorithms. Typically, one can do this by building a software library
of high performance operations like convolution and matrix multiplication, then
specifying models in terms of calls to this library of operations. For example, the
machine learning library Pylearn2 (Goodfellow , 2013c) specifies all of itset al.
machine learning algorithms in terms of calls to Theano (Bergstra , 2010;et al.
Bastien , 2012) and cuda-convnet (Krizhevsky, 2010), which provide theseet al.

high-performance operations. This factored approach can also ease support for
multiple kinds of hardware. For example, the same Theano program can run on
either CPU or GPU, without needing to change any of the calls to Theano itself.
Other libraries like TensorFlow (Abadi , 2015) and Torch (Collobert ,et al. et al.
2011c) provide similar features.

448

CHAPTER 12. APPLICATIONS

12.1.3 Large Scale Distributed Implementations

In many cases, the computational resources available on a single machine are
insufficient. We therefore want to distribute the workload of training and inference

across many machines.

Distributing inference is simple, because each input example we want to process
can be run by a separate machine. This is known as data parallelism.

It is also possible to get model parallelism, where multiple machines work
together on a single datapoint, with each machine running a different part of the

model. This is feasible for both inference and training.

Data parallelism during training is somewhat harder. We can increase the size
of the minibatch used for a single SGD step, but usually we get less than linear
returns in terms of optimization performance. It would be better to allow multiple
machines to compute multiple gradient descent steps in parallel. Unfortunately,

the standard defintion of gradient descent is as a completely sequential algorithm:
the gradient at step is a function of the parameters produced by step .t t− 1

This can be solved using asynchronous stochastic gradient descent (Bengio
et al., 2001; Recht , 2011). In this approach, several processor cores share theet al.
memory representing the parameters. Each core reads parameters without a lock,
then computes a gradient, then increments the parameters without a lock. This
reduces the average amount of improvement that each gradient descent step yields,
because some of the cores overwrite each other’s progress, but the increased rate
of production of steps causes the learning process to be faster overall. Dean et al.
(2012b) pioneered the multi-machine implementation of this lock-free approach
to gradient descent, where the parameters are managed by a parameter server
rather than stored in shared memory. Distributed asynchronous gradient descent

remains the primary strategy for training large deep networks and is used by
most major deep learning groups in industry (Chilimbi , 2014; Wu ,et al. et al.
2015). Academic deep learning researchers typically cannot afford the same scale

of distributed learning systems but some research has focused on how to build
distributed networks with relatively low-cost hardware available in the university
setting (Coates , 2013).et al.

12.1.4 Model Compression

In many commercial applications, it is much more important that the time and
memory cost of running inference in a machine learning model be low than that
the time and memory cost of training be low. For applications that do not require

449

CHAPTER 12. APPLICATIONS

personalization, it is possible to train a model once, then deploy it to be used by
billions of users. In many cases, the end user is more resource-constrained than
the developer. For example, one might train a speech recognition network with a
powerful computer cluster, then deploy it on mobile phones.

A key strategy for reducing the cost of inference is model compression (Buciluǎ
et al., 2006). The basic idea of model compression is to replace the original,
expensive model with a smaller model that requires less memory and runtime to
store and evaluate.

Model compression is applicable when the size of the original model is driven
primarily by a need to prevent overfitting. In most cases, the model with the
lowest generalization error is an ensemble of several independently trained models.
Evaluating all n ensemble members is expensive. Sometimes, even a single model
generalizes better if it is large (for example, if it is regularized with dropout).

These large models learn some function f(x), but do so using many more
parameters than are necessary for the task. Their size is necessary only due to
the limited number of training examples. As soon as we have fit this function
f (x), we can generate a training set containing infinitely many examples, simply
by applying f to randomly sampled points x. We then train the new, smaller,
model to match f (x) on these points. In order to most efficiently use the capacity
of the new, small model, it is best to sample the new x points from a distribution

resembling the actual test inputs that will be supplied to the model later. This can
be done by corrupting training examples or by drawing points from a generative
model trained on the original training set.

Alternatively, one can train the smaller model only on the original training
points, but train it to copy other features of the model, such as its posterior
distribution over the incorrect classes (Hinton , 2014, 2015).et al.

12.1.5 Dynamic Structure

One strategy for accelerating data processing systems in general is to build systems
that have dynamic structure in the graph describing the computation needed to
process an input. Data processing systems can dynamically determine which
subset of many neural networks should be run on a given input. Individual neural
networks can also exhibit dynamic structure internally by determining which subset
of features (hidden units) to compute given information from the input. This
form of dynamic structure inside neural networks is sometimes called conditional
computation et al.(Bengio, 2013; Bengio , 2013b). Since many components of the
architecture may be relevant only for a small amount of possible inputs, the system

450

CHAPTER 12. APPLICATIONS

can run faster by computing these features only when they are needed.

Dynamic structure of computations is a basic computer science principle applied
generally throughout the software engineering discipline. The simplest versions
of dynamic structure applied to neural networks are based on determining which
subset of some group of neural networks (or other machine learning models) should
be applied to a particular input.

A venerable strategy for accelerating inference in a classifier is to use a cascade
of classifiers. The cascade strategy may be applied when the goal is to detect the

presence of a rare object (or event). To know for sure that the object is present,
we must use a sophisticated classifier with high capacity, that is expensive to run.
However, because the object is rare, we can usually use much less computation
to reject inputs as not containing the object. In these situations, we can train
a sequence of classifiers. The first classifiers in the sequence have low capacity,
and are trained to have high recall. In other words, they are trained to make sure
we do not wrongly reject an input when the object is present. The final classifier
is trained to have high precision. At test time, we run inference by running the
classifiers in a sequence, abandoning any example as soon as any one element in
the cascade rejects it. Overall, this allows us to verify the presence of objects with
high confidence, using a high capacity model, but does not force us to pay the cost
of full inference for every example. There are two different ways that the cascade

can achieve high capacity. One way is to make the later members of the cascade
individually have high capacity. In this case, the system as a whole obviously has
high capacity, because some of its individual members do. It is also possible to
make a cascade in which every individual model has low capacity but the system
as a whole has high capacity due to the combination of many small models. Viola
and Jones (2001) used a cascade of boosted decision trees to implement a fast and
robust face detector suitable for use in handheld digital cameras. Their classifier
localizes a face using essentially a sliding window approach in which many windows
are examined and rejected if they do not contain faces. Another version of cascades
uses the earlier models to implement a sort of hard attention mechanism: the
early members of the cascade localize an object and later members of the cascade

perform further processing given the location of the object. For example, Google
transcribes address numbers from Street View imagery using a two-step cascade
that first locates the address number with one machine learning model and then
transcribes it with another (Goodfellow , 2014d).et al.

Decision trees themselves are an example of dynamic structure, because each
node in the tree determines which of its subtrees should be evaluated for each input.

A simple way to accomplish the union of deep learning and dynamic structure

451

CHAPTER 12. APPLICATIONS

is to train a decision tree in which each node uses a neural network to make the
splitting decision (Guo and Gelfand, 1992), though this has typically not been
done with the primary goal of accelerating inference computations.

In the same spirit, one can use a neural network, called the to select whichgater
one out of several expert networks will be used to compute the output, given the
current input. The first version of this idea is called the mixture of experts (Nowlan,
1990; Jacobs , 1991), in which the gater outputs a set of probabilities oret al.
weights (obtained via a softmax nonlinearity), one per expert, and the final output
is obtained by the weighted combination of the output of the experts. In that

case, the use of the gater does not offer a reduction in computational cost, but if a
single expert is chosen by the gater for each example, we obtain the hard mixture
of experts et al.(Collobert , 2001, 2002), which can considerably accelerate training
and inference time. This strategy works well when the number of gating decisions is
small because it is not combinatorial. But when we want to select different subsets
of units or parameters, it is not possible to use a “soft switch” because it requires
enumerating (and computing outputs for) all the gater configurations. To deal
with this problem, several approaches have been explored to train combinatorial
gaters. Bengio (2013b) experiment with several estimators of the gradientet al.
on the gating probabilities, while Bacon (2015) and Bengio (2015a) useet al. et al.
reinforcement learning techniques (policy gradient) to learn a form of conditional

dropout on blocks of hidden units and get an actual reduction in computational
cost without impacting negatively on the quality of the approximation.

Another kind of dynamic structure is a switch, where a hidden unit can
receive input from different units depending on the context. This dynamic routing
approach can be interpreted as an attention mechanism (Olshausen , 1993).et al.
So far, the use of a hard switch has not proven effective on large-scale applications.
Contemporary approaches instead use a weighted average over many possible inputs,
and thus do not achieve all of the possible computational benefits of dynamic
structure. Contemporary attention mechanisms are described in Sec. 12.4.5.1.

One major obstacle to using dynamically structured systems is the decreased
degree of parallelism that results from the system following different code branches
for different inputs. This means that few operations in the network can be described
as matrix multiplication or batch convolution on a minibatch of examples. We
can write more specialized sub-routines that convolve each example with different
kernels or multiply each row of a design matrix by a different set of columns
of weights. Unfortunately, these more specialized subroutines are difficult to
implement efficiently. CPU implementations will be slow due to the lack of cache

coherence and GPU implementations will be slow due to the lack of coalesced

452

CHAPTER 12. APPLICATIONS

memory transactions and the need to serialize warps when members of a warp take
different branches. In some cases, these issues can be mitigated by partitioning the
examples into groups that all take the same branch, and processing these groups
of examples simultaneously. This can be an acceptable strategy for minimizing
the time required to process a fixed amount of examples in an offline setting. In
a real-time setting where examples must be processed continuously, partitioning
the workload can result in load-balancing issues. For example, if we assign one
machine to process the first step in a cascade and another machine to process
the last step in a cascade, then the first will tend to be overloaded and the last

will tend to be underloaded. Similar issues arise if each machine is assigned to
implement different nodes of a neural decision tree.

12.1.6 Specialized Hardware Implementations of Deep Networks

Since the early days of neural networks research, hardware designers have worked
on specialized hardware implementations that could speed up training and/or
inference of neural network algorithms. See early and more recent reviews of
specialized hardware for deep networks (Lindsey and Lindblad, 1994; Beiu ,et al.

2003; Misra and Saha, 2010).

Different forms of specialized hardware (Graf and Jackel, 1989; Mead and
Ismail, 2012; Kim , 2009; Pham , 2012; Chen , 2014a,b) haveet al. et al. et al.
been developed over the last decades, either with ASICs (application-specific inte-
grated circuit), either with digital (based on binary representations of numbers),
analog (Graf and Jackel, 1989; Mead and Ismail, 2012) (based on physical imple-
mentations of continuous values as voltages or currents) or hybrid implementations
(combining digital and analog components). In recent years more flexible FPGA
(field programmable gated array) implementations (where the particulars of the
circuit can be written on the chip after it has been built) have been developed.

Though software implementations on general-purpose processing units (CPUs
and GPUs) typically use 32 or 64 bits of precision to represent floating point
numbers, it has long been known that it was possible to use less precision, at
least at inference time (Holt and Baker, 1991; Holi and Hwang, 1993; Presley

and Haggard, 1994; Simard and Graf, 1994; Wawrzynek , 1996; Savich ,et al. et al.
2007). This has become a more pressing issue in recent years as deep learning
has gained in popularity in industrial products, and as the great impact of faster
hardware was demonstrated with GPUs. Another factor that motivates current
research on specialized hardware for deep networks is that the rate of progress of
a single CPU or GPU core has slowed down, and most recent improvements in
computing speed have come from parallelization across cores (either in CPUs or

453

CHAPTER 12. APPLICATIONS

GPUs). This is very different from the situation of the 1990s (the previous neural
network era) where the hardware implementations of neural networks (which might
take two years from inception to availability of a chip) could not keep up with
the rapid progress and low prices of general-purpose CPUs. Building specialized
hardware is thus a way to push the envelope further, at a time when new hardware
designs are being developed for low-power devices such as phones, aiming for
general-public applications of deep learning (e.g., with speech, computer vision or
natural language).

Recent work on low-precision implementations of backprop-based neural nets

(Vanhoucke , 2011; Courbariaux , 2015; Gupta , 2015) suggestset al. et al. et al.
that between 8 and 16 bits of precision can suffice for using or training deep
neural networks with back-propagation. What is clear is that more precision is
required during training than at inference time, and that some forms of dynamic
fixed point representation of numbers can be used to reduce how many bits are
required per number. Traditional fixed point numbers are restricted to a fixed
range (which corresponds to a given exponent in a floating point representation).
Dynamic fixed point representations share that range among a set of numbers
(such as all the weights in one layer). Using fixed point rather than floating point
representations and using less bits per number reduces the hardware surface area,
power requirements and computing time needed for performing multiplications,

and multiplications are the most demanding of the operations needed to use or
train a modern deep network with backprop.

12.2 Computer Vision

Computer vision has traditionally been one of the most active research areas for
deep learning applications. Many of the most popular standard benchmark tasks
for deep learning algorithms are forms of object recognition or optical character
recognition.

Computer vision is a very broad field encompassing a wide variety of ways

of processing images, and an amazing diversity of applications. Applications of
computer vision range from reproducing human visual abilities, such as recognizing
faces, to creating entirely new categories of visual abilities. As an example of
the latter category, one recent computer vision application is to recognize sound
waves from the vibrations they induce in objects visible in a video (Davis ,et al.
2014). Most deep learning research on computer vision has not focused on such
exotic applications that expand the realm of what is possible with imagery but
rather a small core of AI goals aimed at replicating human abilities. Most deep

454

CHAPTER 12. APPLICATIONS

learning for computer vision is used for object recognition or detection of some
form, whether this means reporting which object is present in an image, annotating
an image with bounding boxes around each object, transcribing a sequence of
symbols from an image, or labeling each pixel in an image with the identity of the
object it belongs to. Because generative modeling has been a guiding principle
of deep learning research, there is also a large body of work on image synthesis
using deep models. While image synthesis is usually not considered aex nihilo
computer vision endeavor, models capable of image synthesis are usually useful for
image restoration, a computer vision task involving repairing defects in images or

removing objects from images.

12.2.1 Preprocessing

Many application areas require sophisticated preprocessing because the original
input comes in a form that is difficult for many deep learning architectures to
represent. Computer vision usually requires relatively little of this kind of prepro-
cessing. The images should be standardized so that their pixels all lie in the same,
reasonable range, like [0,1] or [-1, 1]. Mixing images that lie in [0,1] with images

that lie in [0, 255] will usually result in failure. Formatting images to have the same
scale is the only kind of preprocessing that is strictly necessary. Many computer
vision architectures require images of a standard size, so images must be cropped or
scaled to fit that size. However, even this rescaling is not always strictly necessary.
Some convolutional models accept variably-sized inputs and dynamically adjust
the size of their pooling regions to keep the output size constant (Waibel ,et al.
1989). Other convolutional models have variable-sized output that automatically
scales in size with the input, such as models that denoise or label each pixel in an
image (Hadsell , 2007).et al.

Dataset augmentation may be seen as a way of preprocessing the training set
only. Dataset augmentation is an excellent way to reduce the generalization error

of most computer vision models. A related idea applicable at test time is to show
the model many different versions of the same input (for example, the same image

cropped at slightly different locations) and have the different instantiations of the
model vote to determine the output. This latter idea can be interpreted as an
ensemble approach, and helps to reduce generalization error.

Other kinds of preprocessing are applied to both the train and the test set with
the goal of putting each example into a more canonical form in order to reduce the
amount of variation that the model needs to account for. Reducing the amount of
variation in the data can both reduce generalization error and reduce the size of
the model needed to fit the training set. Simpler tasks may be solved by smaller

455

CHAPTER 12. APPLICATIONS

models, and simpler solutions are more likely to generalize well. Preprocessing
of this kind is usually designed to remove some kind of variability in the input
data that is easy for a human designer to describe and that the human designer
is confident has no relevance to the task. When training with large datasets and
large models, this kind of preprocessing is often unnecessary, and it is best to just
let the model learn which kinds of variability it should become invariant to. For
example, the AlexNet system for classifying ImageNet only has one preprocessing
step: subtracting the mean across training examples of each pixel (Krizhevsky
et al., 2012).

12.2.1.1 Contrast Normalization

One of the most obvious sources of variation that can be safely removed for
many tasks is the amount of contrast in the image. Contrast simply refers to the
magnitude of the difference between the bright and the dark pixels in an image.
There are many ways of quantifying the contrast of an image. In the context of
deep learning, contrast usually refers to the standard deviation of the pixels in an
image or region of an image. Suppose we have an image represented by a tensor
X ∈ R

r c× ×3 , with Xi,j,0 being the red intensity at row i and column j , Xi,j,1 giving

the green intensity and Xi,j,2 giving the blue intensity. Then the contrast of the
entire image is given by

 1

3rc

r

i=1

c

j=1

3

k=1


Xi,j,k − X̄

 2
(12.1)

where X̄ is the mean intensity of the entire image:

X̄ =
1

3rc

r

i=1

c

j=1

3

k=1

Xi,j,k. (12.2)

Global contrast normalization (GCN) aims to prevent images from having
varying amounts of contrast by subtracting the mean from each image, then

rescaling it so that the standard deviation across its pixels is equal to some
constant s. This approach is complicated by the fact that no scaling factor can
change the contrast of a zero-contrast image (one whose pixels all have equal
intensity). Images with very low but non-zero contrast often have little information
content. Dividing by the true standard deviation usually accomplishes nothing
more than amplifying sensor noise or compression artifacts in such cases. This
motivates introducing a small, positive regularization parameter λ to bias the

456

CHAPTER 12. APPLICATIONS

estimate of the standard deviation. Alternately, one can constrain the denominator
to be at least . Given an input image X , GCN produces an output image X

,
defined such that

X

i,j,k = s

X i,j,k− X̄

max


,

λ+ 1

3rc

r
i=1

c
j=1

3
k=1


xi,j,k− X̄

2
. (12.3)

Datasets consisting of large images cropped to interesting objects are unlikely
to contain any images with nearly constant intensity. In these cases, it is safe
to practically ignore the small denominator problem by setting λ = 0 and avoid
division by 0 in extremely rare cases by setting  to an extremely low value like
10−8. This is the approach used by Goodfellow (2013a) on the CIFAR-10et al.
dataset. Small images cropped randomly are more likely to have nearly constant
intensity, making aggressive regularization more useful. Coates (2011) usedet al.
 λ= 0 and = 10 on small, randomly selected patches drawn from CIFAR-10.

The scale parameter s can usually be set to , as done by Coates (2011),1 et al.
or chosen to make each individual pixel have standard deviation across examples

close to 1, as done by Goodfellow (2013a).et al.

The standard deviation in Eq. 12.3 is just a rescaling of the L2 norm of the
image. It is preferable to define GCN in terms of standard deviation rather than
L2 norm because the standard deviation includes division by the number of pixels,
so GCN based on standard deviation allows the same s to be used regardless of
image size. However, the observation that the L2 norm is proportional to the
standard devation can help build a useful intuition. One can understand GCN as
mapping examples to a spherical shell. See Fig. 12.1 for an illustration. This can
be a useful property because neural networks are often better at responding to
directions in space rather than exact locations. Responding to multiple distances in
the same direction requires hidden units with collinear weight vectors but different
biases. Such coordination can be difficult for the learning algorithm to discover.

Additionally, many shallow graphical models have problems with representing
multiple separated modes along the same line. GCN avoids these problems by
reducing each example to a direction rather than a direction and a distance.

Counterintuitively, there is a preprocessing operation known as and itsphering
is not the same operation as GCN. Sphering does not refer to making the data lie
on a spherical shell, but rather to rescaling the principal components to have equal
variance, so that the multivariate normal distribution used by PCA has spherical
contours. Sphering is more commonly known as whitening.

Global contrast normalization will often fail to highlight image features we

457

CHAPTER 12. APPLICATIONS

−1 5 0 0 1 5. . .

x0

−1 5.

0 0.

1 5.
x
1

Raw input

−1 5 0 0 1 5. . .

x0

GCN, = 10λ −2

−1 5 0 0 1 5. . .

x0

GCN, = 0λ

Figure 12.1: GCN maps examples onto a sphere. (Left) Raw input data may have any
norm. GCN with(Center) λ = 0 maps all non-zero examples perfectly onto a sphere.
Here we use s= 1 and  = 10−8 . Because we use GCN based on normalizing the standard
deviation rather than the L2 norm, the resulting sphere is not the unit sphere. (Right)
Regularized GCN, with λ > 0, draws examples toward the sphere but does not completely
discard the variation in their norm. We leave and the same as before.s 

would like to stand out, such as edges and corners. If we have a scene with a large
dark area and a large bright area (such as a city square with half the image in
the shadow of a building) then global contrast normalization will ensure there is a
large difference between the brightness of the dark area and the brightness of the
light area. It will not, however, ensure that edges within the dark region stand out.

This motivates local contrast normalization. Local contrast normalization
ensures that the contrast is normalized across each small window, rather than over

the image as a whole. See Fig. 12.2 for a comparison of global and local contrast
normalization.

Various definitions of local contrast normalization are possible. In all cases,
one modifies each pixel by subtracting a mean of nearby pixels and dividing by
a standard deviation of nearby pixels. In some cases, this is literally the mean

and standard deviation of all pixels in a rectangular window centered on the
pixel to be modified (Pinto , 2008). In other cases, this is a weighted meanet al.
and weighted standard deviation using Gaussian weights centered on the pixel to
be modified. In the case of color images, some strategies process different color
channels separately while others combine information from different channels to
normalize each pixel (Sermanet , 2012).et al.

Local contrast normalization can usually be implemented efficiently by using

458

CHAPTER 12. APPLICATIONS

Input image GCN LCN

Figure 12.2: A comparison of global and local contrast normalization. Visually, the effects
of global contrast normalization are subtle. It places all images on roughly the same
scale, which reduces the burden on the learning algorithm to handle multiple scales. Local
contrast normalization modifies the image much more, discarding all regions of constant
intensity. This allows the model to focus on just the edges. Regions of fine texture,
such as the houses in the second row, may lose some detail due to the bandwidth of the
normalization kernel being too high.

separable convolution (see Sec. 9.8) to compute feature maps of local means and
local standard deviations, then using elementwise subtraction and elementwise
division on different feature maps.

Local contrast normalization is a differentiable operation and can also be used as
a nonlinearity applied to the hidden layers of a network, as well as a preprocessing
operation applied to the input.

As with global contrast normalization, we typically need to regularize local

contrast normalization to avoid division by zero. In fact, because local contrast
normalization typically acts on smaller windows, it is even more important to
regularize. Smaller windows are more likely to contain values that are all nearly
the same as each other, and thus more likely to have zero standard deviation.

12.2.1.2 Dataset Augmentation

As described in Sec. 7.4, it is easy to improve the generalization of a classifier
by increasing the size of the training set by adding extra copies of the training
examples that have been modified with transformations that do not change the
class. Object recognition is a classification task that is especially amenable to

459

CHAPTER 12. APPLICATIONS

this form of dataset augmentation because the class is invariant to so many
transformations and the input can be easily transformed with many geometric
operations. As described before, classifiers can benefit from random translations,
rotations, and in some cases, flips of the input to augment the dataset. In specialized
computer vision applications, more advanced transformations are commonly used
for dataset augmentation. These schemes include random perturbation of the
colors in an image (Krizhevsky , 2012) and nonlinear geometric distortions ofet al.
the input (LeCun , 1998b).et al.

12.3 Speech Recognition

The task of speech recognition is to map an acoustic signal containing a spoken
natural language utterance into the corresponding sequence of words intended
by the speaker. Let X = (x1 ,x2, . . . ,xT) denote the sequence of acoustic input
vectors (traditionally produced by splitting the audio into 20ms frames). Let
y = (y1, y2, . . . , yN) denote the target output sequence (usually a sequence of
words or characters). The automatic speech recognition (ASR) task consists of
creating a function f∗

ASR
that computes the most probable linguistic sequence y

given the acoustic sequence :X

f∗ASR() = arg maxX
y

P ∗(=)y X| X (12.4)

where P∗ is the true conditional distribution relating the inputsX to the targets

y.

Since the 1980s and until about 2009–2012, state-of-the art speech recognition

systems primarily combined hidden Markov models (HMMs) and Gaussian mixture
models (GMMs). GMMs modeled the association between acoustic features and
phonemes (Bahl , 1987), while HMMs modeled the sequence of phonemes.et al.

The GMM-HMM model family treats acoustic waveforms as being generated by the
following process: first an HMM generates a sequence of phonemes and discrete sub-
phonemic states (such as the beginning, middle, and end of each phoneme), then
a GMM transforms each discrete symbol into a brief segment of audio waveform.

Although GMM-HMM systems dominated ASR until recently, speech recognition
was actually one of the first areas where neual networks were applied, and numerous
ASR systems from the late 1980s and early 1990s used neural nets (Bourlard and
Wellekens, 1989; Waibel , 1989; Robinson and Fallside, 1991; Bengio ,et al. et al.
1991, 1992; Konig , 1996). At the time, the performance of ASR based onet al.
neural nets approximately matched the performance of GMM-HMM systems. For

460

CHAPTER 12. APPLICATIONS

example, Robinson and Fallside (1991) achieved 26% phoneme error rate on the
TIMIT (Garofolo , 1993) corpus (with 39 phonemes to discriminate between),et al.
which was better than or comparable to HMM-based systems. Since then, TIMIT
has been a benchmark for phoneme recognition, playing a role similar to the role
MNIST plays for object recognition. However, because of the complex engineering
involved in software systems for speech recognition and the effort that had been
invested in building these systems on the basis of GMM-HMMs, the industry did
not see a compelling argument for switching to neural networks. As a consequence,
until the late 2000s, both academic and industrial research in using neural nets for

speech recognition mostly focused on using neural nets to learn extra features for
GMM-HMM systems.

Later, with much larger and deeper models and much larger datasets,
recognition accuracy was dramatically improved by using neural networks to
replace GMMs for the task of associating acoustic features to phonemes (or sub-
phonemic states). Starting in 2009, speech researchers applied a form of deep
learning based on unsupervised learning to speech recognition. This approach
to deep learning was based on training undirected probabilistic models called
restricted Boltzmann machines (RBMs) to model the input data. RBMs will be
described in Part III. To solve speech recognition tasks, unsupervised pretraining
was used to build deep feedforward networks whose layers were each initialized

by training an RBM. These networks take spectral acoustic representations in
a fixed-size input window (around a center frame) and predict the conditional
probabilities of HMM states for that center frame. Training such deep networks
helped to significantly improve the recognition rate on TIMIT (Mohamed ,et al.
2012), bringing down the phoneme error rate from about 26% to 23%. This was
quickly followed up by work to expand the architecture from phoneme recognition

(which is what TIMIT is focused on) to large-vocabulary speech recognition (Dahl
et al., 2012), which involves not just recognizing phonemes but also recognizing
sequences of words from a large vocabulary. By that time, several of the major
speech groups in industry had started exploring deep learning in collaboration with
academic researchers. Hinton (2012a) describe the breakthroughs achievedet al.
by these collaborators, which are now deployed in products such as mobile phones.

Later, as these groups explored larger and larger labeled datasets and incorpo-
rated some of the methods for initializing, training, and setting up the architecture
of deep nets, they realized that the unsupervised pretraining phase was either
unnecessary or did not bring any significant improvement.

These breakthroughs in recognition performance for word error rate in speech

recognition were unprecedented (around 30% improvement) and were following a

461

CHAPTER 12. APPLICATIONS

long period of about ten years during which error rates did not improve much with
the traditional GMM-HMM technology, in spite of the continuously growing size
of training sets (see Fig. 2.4 of Deng and Yu (2014)). This created a rapid shift in
the speech recognition community towards deep learning. In a matter of roughly
two years, most of the industrial products for speech recognition incorporated deep
neural networks and this success spurred a new wave of research into deep learning
algorithms and architectures for ASR, which is still ongoing today.

One of these innovations was the use of convolutional networks (Sainath ,et al.
2013) that replicate weights across time and frequency, improving over the earlier

time-delay neural networks that replicated weights only across time. The new
two-dimensional convolutional models regard the input spectrogram not as one
long vector but as an image, with one axis corresponding to time and the other to
frequency of spectral components.

Another important push, still ongoing, has been towards end-to-end deep
learning speech recognition systems that completely remove the HMM. The first
major breakthrough in this direction came from Graves (2013) who trained aet al.
deep LSTM RNN (see Sec. 10.11), using MAP inference over the frame-to-phoneme
alignment, as in LeCun (1998c) and in the CTC framework (Graves ,et al. et al.
2006; Graves, 2012). A deep RNN (Graves , 2013) has state variables fromet al.
several layers at each time step, giving the unfolded graph two kinds of depth:

ordinary depth due to a stack of layers, and depth due to time unfolding. This
work brought the phoneme error rate on TIMIT to a record low of 17.7%. See
Pascanu (2014a) and Chung (2014) for other variants of deep RNNs,et al. et al.
applied in other settings.

Another contemporary step toward end-to-end deep learning ASR is to let the
system learn how to “align” the acoustic-level information with the phonetic-level
information (Chorowski , 2014; Lu , 2015).et al. et al.

12.4 Natural Language Processing

Natural language processing (NLP) is the use of human languages, such as English
or French, by a computer. Computer programs typically read and emit specialized
languages designed to allow efficient and unambiguous parsing by simple programs.
More naturally occuring languages are often ambiguous and defy formal description.
Natural language processing includes applications such as machine translation,
in which the learner must read a sentence in one human language and emit an

equivalent sentence in another human language. Many NLP applications are based
on language models that define a probability distribution over sequences of words,

462

CHAPTER 12. APPLICATIONS

characters or bytes in a natural language.

As with the other applications discussed in this chapter, very generic neural
network techniques can be successfully applied to natural language processing.
However, to achieve excellent performance and to scale well to large applications,
some domain-specific strategies become important. To build an efficient model of
natural language, we must usually use techniques that are specialized for processing
sequential data. In many cases, we choose to regard natural language as a sequence
of words, rather than a sequence of individual characters or bytes. Because the total
number of possible words is so large, word-based language models must operate on

an extremely high-dimensional and sparse discrete space. Several strategies have
been developed to make models of such a space efficient, both in a computational
and in a statistical sense.

12.4.1 -gramsn

A language model defines a probability distribution over sequences of tokens in
a natural language. Depending on how the model is designed, a token may be
a word, a character, or even a byte. Tokens are always discrete entities. The
earliest successful language models were based on models of fixed-length sequences
of tokens called -grams. An -gram is a sequence of tokens.n n n

Models of n-grams define the conditional probability of the n-th token given
the preceding n− 1 tokens. Longer sequences may be modeled using products of
these conditional distributions:

P (x1, . . . , xτ) = (P x1, . . . , xn−1)
τ

t n=

P (xt | xt n− +1 , . . . , xt−1). (12.5)

This decomposition is justified by the chain rule of probability. The probability
distribution over the initial sequence P (x1, . . . , xn−1) may be modeled by a different
model with a smaller value of .n

Training n-gram models is straightforward because the maximum likelihood

estimate can be computed simply by counting how many times each possible n
gram occurs in the training set. Models based on n -grams have been the core
building block of statistical language modeling for many decades (Jelinek and
Mercer, 1980; Katz, 1987; Chen and Goodman, 1999).

For small values of n, models have particular names: unigram for n=1, bigram
for n=2, and trigram for n=3. These names derive from the Latin prefixes for the
corresponding numbers and the Greek suffix “-gram” denoting something that is
written.

463

CHAPTER 12. APPLICATIONS

Usually we train both an n-gram model and an n−1 gram model simultaneously.
This makes it easy to compute

P (xt | xt n− +1, . . . , xt) = Pn(x t n− +1, . . . , xt)/Pn−1 (xt n− +1 , xt−1) (12.6)

simply by looking up two stored probabilities. For this to exactly reproduce
inference in Pn, we must omit the final character from each sequence when we
train Pn−1.

As an example, we demonstrate how a trigram model computes the probability

of the sentence “ THE DOG RAN AWAY.” The first words of the sentence cannot be
handled by the default formula based on conditional probability because there is no
context at the beginning of the sentence. Instead, we must use the marginal prob-
ability over words at the start of the sentence. We thus evaluate P3 (THE DOG RAN).
Finally, the last word may be predicted using the typical case, of using the con-
ditional distribution P(AWAY DOG RAN|). Putting this together with Eq. 12.6, we
obtain:

P (THE DOG RAN AWAY) = P3()THE DOG RAN P3()DOG RAN AWAY /P2()DOG RAN .
(12.7)

A fundamental limitation of maximum likelihood for n-gram models is that Pn
as estimated from training set counts is very likely to be zero in many cases, even
though the tuple (x t n− +1, . . . , xt) may appear in the test set. This can cause two
different kinds of catastrophic outcomes. When Pn−1 is zero, the ratio is undefined,
so the model does not even produce a sensible output. When Pn−1 is non-zero but
Pn is zero, the test log-likelihood is −∞. To avoid such catastrophic outcomes,
most n-gram models employ some form of smoothing. Smoothing techniques shift
probability mass from the observed tuples to unobserved ones that are similar.
See Chen and Goodman (1999) for a review and empirical comparisons. One basic
technique consists of adding non-zero probability mass to all of the possible next
symbol values. This method can be justified as Bayesian inference with a uniform

or Dirichlet prior over the count parameters. Another very popular idea is to form
a mixture model containing higher-order and lower-order n-gram models, with the

higher-order models providing more capacity and the lower-order models being
more likely to avoid counts of zero. Back-off methods look-up the lower-order
n-grams if the frequency of the context xt−1, . . . , xt n− +1 is too small to use the
higher-order model. More formally, they estimate the distribution over xt by using
contexts x t n k− + , . . . , xt−1, for increasing k, until a sufficiently reliable estimate is
found.

Classical n-gram models are particularly vulnerable to the curse of dimension-
ality. There are | |V n possible n-grams and | |V is often very large. Even with a

464

CHAPTER 12. APPLICATIONS

massive training set and modest n , most n-grams will not occur in the training set.
One way to view a classical n-gram model is that it is performing nearest-neighbor
lookup. In other words, it can be viewed as a local non-parametric predictor,
similar to k -nearest neighbors. The statistical problems facing these extremely
local predictors are described in Sec. 5.11.2. The problem for a language model is
even more severe than usual, because any two different words have the same dis-
tance from each other in one-hot vector space. It is thus difficult to leverage much
information from any “neighbors”—only training examples that repeat literally the
same context are useful for local generalization. To overcome these problems, a

language model must be able to share knowledge between one word and other
semantically similar words.

To improve the statistical efficiency of n-gram models, class-based language
models (Brown , 1992; Ney and Kneser, 1993; Niesler , 1998) introduceet al. et al.
the notion of word categories and then share statistical strength between words that
are in the same category. The idea is to use a clustering algorithm to partition the
set of words into clusters or classes, based on their co-occurence frequencies with
other words. The model can then use word class IDs rather than individual word
IDs to represent the context on the right side of the conditioning bar. Composite
models combining word-based and class-based models via mixing or back-off are
also possible. Although word classes provide a way to generalize between sequences

in which some word is replaced by another of the same class, much information is
lost in this representation.

12.4.2 Neural Language Models

Neural language models or NLMs are a class of language model designed to overcome
the curse of dimensionality problem for modeling natural language sequences by
using a distributed representation of words (Bengio , 2001). Unlike class-et al.

based n -gram models, neural language models are able to recognize that two words
are similar without losing the ability to encode each word as distinct from the

other. Neural language models share statistical strength between one word (and
its context) and other similar words and contexts. The distributed representation
the model learns for each word enables this sharing by allowing the model to treat
words that have features in common similarly. For example, if the word dog and
the word cat map to representations that share many attributes, then sentences
that contain the word cat can inform the predictions that will be made by the
model for sentences that contain the word dog, and vice-versa. Because there are
many such attributes, there are many ways in which generalization can happen,
transferring information from each training sentence to an exponentially large

465

CHAPTER 12. APPLICATIONS

number of semantically related sentences. The curse of dimensionality requires the
model to generalize to a number of sentences that is exponential in the sentence
length. The model counters this curse by relating each training sentence to an
exponential number of similar sentences.

We sometimes call these word representations word embeddings. In this inter-
pretation, we view the raw symbols as points in a space of dimension equal to the
vocabulary size. The word representations embed those points in a feature space
of lower dimension. In the original space, every word is represented by a one-hot
vector, so every pair of words is at Euclidean distance

√
2 from each other. In the

embedding space, words that frequently appear in similar contexts (or any pair
of words sharing some “features” learned by the model) are close to each other.
This often results in words with similar meanings being neighbors. Fig. 12.3 zooms
in on specific areas of a learned word embedding space to show how semantically
similar words map to representations that are close to each other.

Neural networks in other domains also define embeddings. For example, a
hidden layer of a convolutional network provides an “image embedding.” Usually
NLP practitioners are much more interested in this idea of embeddings because
natural language does not originally lie in a real-valued vector space. The hidden
layer has provided a more qualitatively dramatic change in the way the data is
represented.

Figure 12.3: Two-dimensional visualizations of word embeddings obtained from a neural
machine translation model (Bahdanau et al., 2014), zooming in on specific areas where
semantically related words have embedding vectors that are close to each other. Years
appear on the left, countries in the middle, and numbers on the right. Keep in mind
that these embeddings are 2-D for the purpose of visualization. In real applications,
embeddings typically have higher dimensionality and can simultaneously capture many
kinds of similarity between words.

466

CHAPTER 12. APPLICATIONS

12.4.3 High-Dimensional Outputs

In many natural language appplications, we often want our models to produce
words (rather than characters) as the fundamental unit of the output. For large

vocabularies, it can be very computationally expensive to represent an output
distribution over the choice of a word, because the vocabulary size is large. In many

applications, V contains hundreds of thousands of words. The naive approach to
representing such a distribution is to apply an affine transformation from a hidden
representation to the output space, then apply the softmax function. Suppose
we have a vocabulary V with size | |V . The weight matrix describing the linear
component of this affine transformation is very large, because its output dimension
is | |V . This imposes a high memory cost to represent the matrix, and a high
computational cost to multiply by it. Because the softmax is normalized across all
| |V outputs, it is necessary to perform the full matrix multiplication at training
time as well as test time—we cannot calculate only the dot product with the weight
vector for the correct output. The high computational costs of the output layer
thus arise both at training time (to compute the likelihood and its gradient) and

at test time (to compute probabilities for all or selected words).

Suppose that h is the top hidden layer used to predict the output probabilities
ŷ. If we parametrize the transformation from h to ŷ with learned weights W
and learned biases b, then the affine-softmax output layer performs the following
computations:

a i= bi +


j

Wij hj ∀ ∈ { | |}i 1, . . . , V , (12.8)

ŷ i=
e ai

| |V
i=1 e

ai
. (12.9)

If h contains nh elements then the above operation is O (| |V nh). With nh in the
thousands and | |V in the hundreds of thousands, this operation dominates the
computation of most neural language models.

12.4.3.1 Use of a Short List

The first neural language models (Bengio , 2001, 2003) dealt with the high costet al.
of using a softmax over a large number of output words by limiting the vocabulary
size to 10,000 or 20,000 words. Schwenk and Gauvain (2002) and Schwenk (2007)
built upon this approach by splitting the vocabulary V into a shortlist L of most
frequent words (handled by the neural net) and a tail T =V L\ of more rare words
(handled by an n-gram model). To be able to combine the two predictions, the

467

CHAPTER 12. APPLICATIONS

neural net also has to predict the probability that a word appearing after context
C belongs to the tail list. This may be achieved by adding an extra sigmoid output
unit to provide an estimate of P (i C∈ |T). The extra output can then be used to
achieve an estimate of the probability distribution over all words in as follows:V

P (y i C= |) =1i∈LP (y i C, i= | ∈ L)(1 ())− P i C∈ |T (12.10)

+ 1 i∈TP (y i C, i= | ∈ T) ()P i C∈ |T

where P(y= i C, i| ∈ L) is provided by the neural language model and P (y = i |
C, i ∈ T) is provided by the n-gram model. With slight modification, this approach
can also work using an extra output value in the neural language model’s softmax

layer, rather than a separate sigmoid unit.

An obvious disadvantage of the short list approach is that the potential gener-
alization advantage of the neural language models is limited to the most frequent

words, where, arguably, it is the least useful. This disadvantage has stimulated

the exploration of alternative methods to deal with high-dimensional outputs,
described below.

12.4.3.2 Hierarchical Softmax

A classical approach (Goodman, 2001) to reducing the computational burden
of high-dimensional output layers over large vocabulary sets V is to decompose
probabilities hierarchically. Instead of necessitating a number of computations
proportional to | |V (and also proportional to the number of hidden units, nh),
the | |V factor can be reduced to as low as log | |V . Bengio (2002) and Morin and
Bengio (2005) introduced this factorized approach to the context of neural language
models.

One can think of this hierarchy as building categories of words, then categories
of categories of words, then categories of categories of categories of words, etc.

These nested categories form a tree, with words at the leaves. In a balanced tree,
the tree has depth O(log | |V). The probability of a choosing a word is given by the

product of the probabilities of choosing the branch leading to that word at every
node on a path from the root of the tree to the leaf containing the word. Fig. 12.4
illustrates a simple example. Mnih and Hinton (2009) also describe how to use
multiple paths to identify a single word in order to better model words that have
multiple meanings. Computing the probability of a word then involves summation
over all of the paths that lead to that word.

To predict the conditional probabilities required at each node of the tree, we
typically use a logistic regression model each node of the tree, and provide the same

468

CHAPTER 12. APPLICATIONS

(1)(0)

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(1,1)(1,0)(0,1)(0,0)

w0w0 w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7

Figure 12.4: Illustration of a simple hierarchy of word categories, with 8 words w0, . . . , w7
organized into a three level hierarchy. The leaves of the tree represent actual specific words.
Internal nodes represent groups of words. Any node can be indexed by the sequence
of binary decisions (0=left, 1=right) to reach the node from the root. Super-class (0)
contains the classes (0,0) (0and ,1), which respectively contain the sets of words {w0, w1 }
and {w2, w3} , and similarly super-class contains the classes(1) (1, 0) (1and , 1), which
respectively contain the words (w4 , w5) (and w6 , w7). If the tree is sufficiently balanced,
the maximum depth (number of binary decisions) is on the order of the logarithm of
the number of words | |V : the choice of one out of | |V words can be obtained by doing
O(log | |V) operations (one for each of the nodes on the path from the root). In this example,
computing the probability of a word y can be done by multiplying three probabilities,
associated with the binary decisions to move left or right at each node on the path from
the root to a node y . Let bi(y) be the i-th binary decision when traversing the tree
towards the value y. The probability of sampling an output y decomposes into a product
of conditional probabilities, using the chain rule for conditional probabilities, with each
node indexed by the prefix of these bits. For example, node (1,0) corresponds to the
prefix (b0 (w4) = 1, b1(w4) = 0), and the probability of w4 can be decomposed as follows:

P w(= y 4) = (P b0 = 1, b1 = 0, b2 = 0) (12.11)

= (P b0 = 1) (P b1 = 0 | b0 = 1) (P b2 = 0 | b0= 1, b1 = 0). (12.12)

469

CHAPTER 12. APPLICATIONS

context C as input to all of these models. Because the correct output is encoded
in the training set, we can use supervised learning to train the logistic regression
models. This is typically done using a standard cross-entropy loss, corresponding
to maximimizing the log-likelihood of the correct sequence of decisions.

Because the output log-likelihood can be computed efficiently (as low as log | |V

rather than | |V), its gradients may also be computed efficiently. This includes not
only the gradient with respect to the output parameters but also the gradients
with respect to the hidden layer activations.

It is possible but usually not practical to optimize the tree structure to minimize
the expected number of computations. Tools from information theory specify how
to choose the optimal binary code given the relative frequencies of the words. To
do so, we could structure the tree so that the number of bits associated with a word
is approximately equal to the logarithm of the frequency of that word. However, in
practice, the computational savings are typically not worth the effort because the
computation of the output probabilities is only one part of the total computation
in the neural language model. For example, suppose there are l fully connected
hidden layers of width nh. Let nb be the weighted average of the number of bits
required to identify a word, with the weighting given by the frequency of these
words. In this example, the number of operations needed to compute the hidden
activations grows as as O(ln2h) while the output computations grow as O(nhnb).

As long as nb≤ ln h, we can reduce computation more by shrinking nh than by
shrinking nb. Indeed, nb is often small. Because the size of the vocabulary rarely
exceeds a million words and log2(106) ≈ 20, it is possible to reduce nb to about ,20

but nh is often much larger, around 103 or more. Rather than carefully optimizing
a tree with a branching factor of 2, one can instead define a tree with depth two
and a branching factor of


| |V . Such a tree corresponds to simply defining a set

of mutually exclusive word classes. The simple approach based on a tree of depth
two captures most of the computational benefit of the hierarchical strategy.

One question that remains somewhat open is how to best define these word

classes, or how to define the word hierarchy in general. Early work used existing
hierarchies (Morin and Bengio, 2005) but the hierarchy can also be learned, ideally
jointly with the neural language model. Learning the hierarchy is difficult. An exact
optimization of the log-likelihood appears intractable because the choice of a word
hierarchy is a discrete one, not amenable to gradient-based optimization. However,
one could use discrete optimization to approximately optimize the partition of
words into word classes.

An important advantage of the hierarchical softmax is that it brings computa-
tional benefits both at training time and at test time, if at test time we want to

470

CHAPTER 12. APPLICATIONS

compute the probability of specific words.

Of course, computing the probability of all | |V words will remain expensive
even with the hierarchical softmax. Another important operation is selecting the
most likely word in a given context. Unfortunately the tree structure does not
provide an efficient and exact solution to this problem.

A disadvantage is that in practice the hierarchical softmax tends to give worse

test results than sampling-based methods we will describe next. This may be due
to a poor choice of word classes.

12.4.3.3 Importance Sampling

One way to speed up the training of neural language models is to avoid explicitly
computing the contribution of the gradient from all of the words that do not appear
in the next position. Every incorrect word should have low probability under the
model. It can be computationally costly to enumerate all of these words. Instead,

it is possible to sample only a subset of the words. Using the notation introduced
in Eq. 12.8, the gradient can be written as follows:

∂ P y Clog (|)

∂θ
=
∂ log softmaxy ()a

∂θ
(12.13)

=
∂

∂θ
log

eay
i e
ai

=
∂

∂θ
(ay− log



i

eai)

=
∂ay
∂θ

−


i

P (i C|)
∂ai
∂θ

where a is the vector of pre-softmax activations (or scores), with one element
per word. The first term is the positive phase term (pushing ay up) while the
second term is the negative phase term (pushing ai down for all i, with weight
P(i C|). Since the negative phase term is an expectation, we can estimate it with

a Monte Carlo sample. However, that would require sampling from the model itself.
Sampling from the model requires computing P(i C|) for all i in the vocabulary,
which is precisely what we are trying to avoid.

Instead of sampling from the model, one can sample from another distribution,
called the proposal distribution (denoted q), and use appropriate weights to correct
for the bias introduced by sampling from the wrong distribution (Bengio and
Sénécal, 2003; Bengio and Sénécal, 2008). This is an application of a more general

471

CHAPTER 12. APPLICATIONS

technique called importance sampling, which will be described in more detail
in Sec. 17.1.3. Unfortunately, even exact importance sampling is not efficient
because it requires computing weights pi/q i, where pi = P (i C|), which can only
be computed if all the scores a i are computed. The solution adopted for this
application is called biased importance sampling, where the importance weights
are normalized to sum to 1. When negative word n i is sampled, the associated
gradient is weighted by

wi =
pni/qn iN
j=1 pnj/qn j

. (12.14)

These weights are used to give the appropriate importance to the m negative
samples from q used to form the estimated negative phase contribution to the
gradient:

| |V

i=1

P (i C|)
∂ai
∂θ

≈
1

m

m

i=1

wi
∂ani
∂θ
. (12.15)

A unigram or a bigram distribution works well as the proposal distribution q . It is
easy to estimate the parameters of such a distribution from data. After estimating
the parameters, it is also possible to sample from such a distribution very efficiently.

Importance sampling is not only useful for speeding up models with large
softmax outputs. More generally, it is useful for accelerating training with large

sparse output layers, where the output is a sparse vector rather than a -of-1 n
choice. An example is a bag of words. A bag of words is a sparse vector vwhere vi
indicates the presence or absence of word i from the vocabulary in the document.
Alternately, vi can indicate the number of times that word i appears. Machine
learning models that emit such sparse vectors can be expensive to train for a
variety of reasons. Early in learning, the model may not actually choose to make
the output truly sparse. Moreover, the loss function we use for training might
most naturally be described in terms of comparing every element of the output to
every element of the target. This means that it is not always clear that there is a

computational benefit to using sparse outputs, because the model may choose to
make the majority of the output non-zero and all of these non-zero values need to
be compared to the corresponding training target, even if the training target is zero.
Dauphin (2011) demonstrated that such models can be accelerated usinget al.
importance sampling. The efficient algorithm minimizes the loss reconstruction for
the “positive words” (those that are non-zero in the target) and an equal number
of “negative words.” The negative words are chosen randomly, using a heuristic to
sample words that are more likely to be mistaken. The bias introduced by this

heuristic oversampling can then be corrected using importance weights.

472

CHAPTER 12. APPLICATIONS

In all of these cases, the computational complexity of gradient estimation for
the output layer is reduced to be proportional to the number of negative samples
rather than proportional to the size of the output vector.

12.4.3.4 Noise-Contrastive Estimation and Ranking Loss

Other approaches based on sampling have been proposed to reduce the computa-
tional cost of training neural language models with large vocabularies. An early
example is the ranking loss proposed by Collobert and Weston (2008a), which

views the output of the neural language model for each word as a score and tries to
make the score of the correct word ay be ranked high in comparison to the other
scores ai . The ranking loss proposed then is

L =


i

max(0 1, − ay + ai). (12.16)

The gradient is zero for the i-th term if the score of the observed word, ay, is
greater than the score of the negative word ai by a margin of 1. One issue with
this criterion is that it does not provide estimated conditional probabilities, which
are useful in some applications, including speech recognition and text generation
(including conditional text generation tasks such as translation).

A more recently used training objective for neural language model is noise-
contrastive estimation, which is introduced in Sec. 18.6. This approach has been
successfully applied to neural language models (Mnih and Teh, 2012; Mnih and

Kavukcuoglu, 2013).

12.4.4 Combining Neural Language Models with -gramsn

A major advantage of n-gram models over neural networks is that n-gram models
achieve high model capacity (by storing the frequencies of very many tuples)
while requiring very little computation to process an example (by looking up
only a few tuples that match the current context). If we use hash tables or trees
to access the counts, the computation used for n-grams is almost independent

of capacity. In comparison, doubling a neural network’s number of parameters
typically also roughly doubles its computation time. Exceptions include models
that avoid using all parameters on each pass. Embedding layers index only a single
embedding in each pass, so we can increase the vocabulary size without increasing
the computation time per example. Some other models, such as tiled convolutional
networks, can add parameters while reducing the degree of parameter sharing
in order to maintain the same amount of computation. However, typical neural

473

CHAPTER 12. APPLICATIONS

network layers based on matrix multiplication use an amount of computation
proportional to the number of parameters.

One easy way to add capacity is thus to combine both approaches in an ensemble
consisting of a neural language model and an n-gram language model (Bengio
et al., 2001, 2003). As with any ensemble, this technique can reduce test error if
the ensemble members make independent mistakes. The field of ensemble learning
provides many ways of combining the ensemble members’ predictions, including
uniform weighting and weights chosen on a validation set. Mikolov (2011a)et al.
extended the ensemble to include not just two models but a large array of models.

It is also possible to pair a neural network with a maximum entropy model and
train both jointly (Mikolov , 2011b). This approach can be viewed as traininget al.
a neural network with an extra set of inputs that are connected directly to the
output, and not connected to any other part of the model. The extra inputs are
indicators for the presence of particular n-grams in the input context, so these
variables are very high-dimensional and very sparse. The increase in model capacity
is huge—the new portion of the architecture contains up to | |sV n parameters—but
the amount of added computation needed to process an input is minimal because
the extra inputs are very sparse.

12.4.5 Neural Machine Translation

Machine translation is the task of reading a sentence in one natural language and
emitting a sentence with the equivalent meaning in another language. Machine
translation systems often involve many components. At a high level, there is
often one component that proposes many candidate translations. Many of these
translations will not be grammatical due to differences between the language. For
example, many languages put adjectives after nouns, so when translated to English
directly they yield phrases such as “apple red.” The proposal mechanism suggests
many variants of the suggested translation, ideally including “red apple.” A second

component of the translation system, a language model, evaluate the proposed
translations, and can score “red apple” as better than “apple red.”

The earliest use of neural networks for machine translation was to upgrade the

language model of a translation system by using a neural language model (Schwenk
et al., 2006; Schwenk, 2010). Previously, most machine translation systems had
used an n-gram model for this component. The n-gram based models used for
machine translation include not just traditional back-off n -gram models (Jelinek
and Mercer, 1980; Katz, 1987; Chen and Goodman, 1999) but also maximum
entropy language models et al.(Berger , 1996), in which an affine-softmax layer
predicts the next word given the presence of frequent -grams in the context.n

474

CHAPTER 12. APPLICATIONS

Decoder

Output object (English

sentence)

Intermediate, semantic representation

Source object (French sentence or image)

Encoder

Figure 12.5: The encoder-decoder architecture to map back and forth between a surface
representation (such as a sequence of words or an image) and a semantic representation.
By using the output of an encoder of data from one modality (such as the encoder mapping
from French sentences to hidden representations capturing the meaning of sentences) as
the input to a decoder for another modality (such as the decoder mapping from hidden
representations capturing the meaning of sentences to English), we can train systems that
translate from one modality to another. This idea has been applied successfully not just
to machine translation but also to caption generation from images.

Traditional language models simply report the probability of a natural language
sentence. Because machine translation involves producing an output sentence given

an input sentence, it makes sense to extend the natural language model to be
conditional. As described in Sec. 6.2.1.1, it is straightforward to extend a model
that defines a marginal distribution over some variable to define a conditional
distribution over that variable given a context C, where C might be a single variable

or a list of variables. Devlin (2014) beat the state-of-the-art in some statisticalet al.
machine translation benchmarks by using an MLP to score a phrase t1, t2 , . . . , tk
in the target language given a phrase s1 , s2, . . . , sn in the source language. The
MLP estimates P (t1, t2 , . . . , tk | s1 , s2, . . . , sn). The estimate formed by this MLP
replaces an estimate of the same quantity.

A drawback of the MLP-based approach is that it requires the sequences to be
preprocessed to be of fixed length. To make the translation more flexible, we would
like to use a model that can accommodate variable length inputs and variable
length outputs. An RNN provides this ability. Sec. 10.2.4 describes several ways
of constructing an RNN that represents a conditional distribution over a sequence
given some input, and Sec. 10.4 describes how to accomplish this conditioning

when the input is a sequence. In all cases, one model first readers the input

475

CHAPTER 12. APPLICATIONS

sequence and emits a data structure that summarizes the input sequence. We call
this summary the “context” C . The context C may be a list of scalars, or it may be
a vector or tensor. The model that reads the input to produce C may be an RNN
(Cho , 2014a; Sutskever , 2014b; Jean , 2014) or a convolutionalet al. et al. et al.
network (Kalchbrenner and Blunsom, 2013). A second model, usually an RNN,
then reads the context C and generates a sentence in the target language. This
general idea of an encoder-decoder framework for machine translation is illustrated
in Fig. 12.5.

In order to generate an entire sentence conditioned on the source sentence, the

model must have a way to represent the entire source sentence. Earlier models
were only able to represent individual words or phrases. From a representation
learning point of view, it can be useful to learn a representation in which sentences
that have the same meaning have similar representations regardless of whether
they were written in the source language or the target language. This strategy was
explored first using a combination of convolutions and RNNs (Kalchbrenner and
Blunsom, 2013). Later work introduced the use of an RNN for scoring proposed
translations (Cho , 2014a) and for generating translated sentences (Sutskeveret al.
et al. et al., 2014b). Jean (2014) scaled these models to larger vocabularies.

12.4.5.1 Using an Attention Mechanism and Aligning Pieces of Data

Figure 12.6: Illustration of the attention mechanism used in a neural machine translation
system introduced in Bahdanau (2014).et al.

Using a fixed-size representation to capture all the semantic details of a very

long sentence of say 60 words is very difficult. It can be achieved by training

476

CHAPTER 12. APPLICATIONS

a sufficiently large RNN well enough and for long enough, as demonstrated by
Cho (2014a) and Sutskever (2014b). However, this is not how humanset al. et al.
translate long sequences of words. What they usually do, after having read the
whole sentence or paragraph (to get the context and the jist of what is being
expressed), they produce the translated words one at a time, each time focusing
on a different part of the input sentence in order to gather the semantic details
that are required to produce the next output word. That is exactly the idea
that Bahdanau (2014) first introduced and that is illustrated in Fig. 12.6.et al.

We can think of an attention-based system as having three components:

1. A process that “reads” raw data (such as source words in source sentence),
and converts them into distributed representations, with one feature vector
associated with each word position.

2. A list of feature vectors storing the output of the reader. This can be
understood as a “ ” containing a sequence of facts, which can bememory
retrieved later, not necessarily in the same order, nor having to visit all of
them.

3. A process that “ ” the content of the memory to sequentially performexploits
a task, at each time step having the ability put attention on the content of
one memory element (or a few, with a different weight).

The third component generates the translated sentence.

When words in a sentence written in one language are aligned with correspond-
ing words in a translated sentence in another language, it becomes possible to relate
the corresponding word embeddings. Earlier work showed that one could learn a
kind of translation matrix relating the word embeddings in one language with the
word embeddings in another (Kočiský , 2014), yielding lower alignment erroret al.
rates than traditional approaches based on the frequency counts in the phrase table.

There is even earlier work on learning cross-lingual word vectors (Klementiev ,et al.
2012). Many extensions to this approach are possible. For example, more efficient
cross-lingual alignment (Gouws , 2014) allows training on larger datasets.et al.

12.4.6 Historical Perspective

The idea of distributed representations for symbols was introduced by Rumelhart
et al. (1986a) in one of the first explorations of back-propagation, with symbols
corresponding to the identity of family members and the neural network capturing
the relationships between family members, with training examples forming triplets

477

CHAPTER 12. APPLICATIONS

such as (Colin, Mother, Victoria). The first layer of the neural network learned
a representation of each family member. For example, the features for Colin
might represent which family tree Colin was in, what branch of that tree he was
in, what generation he was from, etc. One can think of the neural network as
computing learned rules relating these attributes together in order to obtain the
desired predictions. The model can then make predictions such as inferring who is
the mother of Colin.

The idea of forming an embedding for a symbol was extended to the idea of an
embedding for a word by Deerwester (1990). These embeddings were learnedet al.

using the SVD. Later, embeddings would be learned by neural networks.

The history of natural language processing is marked by transitions in the
popularity of different ways of representing the input to the model. Following
this early work on symbols on words, some of the earliest applications of neural
networks to NLP (Miikkulainen and Dyer, 1991; Schmidhuber, 1996) represented
the input as a sequence of characters.

Bengio (2001) returned the focus to modeling words and introduced neuralet al.
language models, which produce interpretable word embeddings. These neural
models have scaled up from defining representations of a small set of symbols
in the 1980s to millions of words (including proper nouns and mispellings) in
modern applications. This computational scaling effort led to the invention of the

techniques described above in Sec. 12.4.3.

Initially, the use of words as the fundamental units of language models yielded
improved language modeling performance (Bengio , 2001). To this day, newet al.

techniques continually push both character-based models and word-based models
forward, with recent work (Gillick , 2015) even modeling individual bytes ofet al.
unicode characters.

Two-dimensional visualizations of embeddings became a popular tool for an-
alyzing language models following the development of the t-SNE dimensionality
reduction algorithm (van der Maaten and Hinton, 2008) and its high-profile appli-
cation to visualization word embeddings by Joseph Turian in 2009.

12.5 Other Applications

In this section we cover a few other types of applications of deep learning that
are different from the standard object recognition, speech recognition and natural
language processing tasks discussed above. The third part of this book will expand

that scope even further to include tasks requiring the ability to generate samples or

478

CHAPTER 12. APPLICATIONS

conditional high-dimensional samples (unlike “the next word,” in language models).

12.5.1 Recommender Systems

One of the major families of applications of machine learning in the information
technology sector is the ability to make recommendations of items to potential
users or customers. Two major types of applications can be distinguished: online
advertising and item recommendations (often these recommendations are still for
the purpose of selling a product). Both rely on predicting the association between

a user and an item, either to predict the probability of some action (the user
buying the product, or some proxy for this action) or the expected gain (which
may depend on the value of the product) if an ad is shown or a recommendation is
made regarding that product, to that user. The internet is currently financed in
great part by various forms of online advertising. There are major parts of the
economy that rely on online shopping. Companies including Amazon and eBay
use machine learning, including deep learning for their product recommendations.
Sometimes, the items are not products that are actually for sale. Examples include
the recommendation of posts on social networks, recommending movies to watch,

recommending jokes, recommending advice from experts, matching players for
video games, or matching people in dating services.

Often, this association problem is handled like a supervised learning problem:
given some information about the item and about the user, predict the proxy of
interest (user clicks on ad, user enters a rating, user clicks on a “like” button, user
buys product, user spends some amount of money on the product, user spends
time visiting a page for the product, etc). This often ends up being either a
regression problem (predicting some conditional expected value) or a probabilistic
classification problem (predicting the conditional probability of some discrete
event).

The early work on recommender systems relied on the minimal information
available as inputs for these predictions: the user ID and the item ID. In this
context, the only way to generalize is to rely on the similarity between the patterns
of values of the target variable for different users or for different items. Suppose

that user 1 and user 2 both like items A, B and C. From this, we may infer that
user 1 and user 2 have similar tastes. If user 1 likes item D, then this should be a
strong cue that user 2 will also like D. Algorithms based on this principle come
under the name of collaborative filtering. Both non-parametric approaches (such
as nearest-neighbor methods based on the estimated similarity between patterns
of preferences) and parametric methods are possible. Parametric methods often
rely on learning a distributed representation (also called embedding) for each user

479

CHAPTER 12. APPLICATIONS

and for each item. Bilinear prediction of the target variable (such as a rating) is a
simple parametric method that is highly successful and often found as a component
of state-of-the-art systems. The prediction is obtained by the dot product between
the user embedding and the item embedding (possibly corrected by constants that
depend only on either the user ID or the item ID). Let R̂ be the matrix containing
our predictions, Aa matrix with user embeddings in its rows and B a matrix with
item embeddings in its columns. Let b and c be vectors that contain respectively
a kind of bias for each user (representing how grumpy or positive that user is
in general) and for each item (representing its general popularity). The bilinear

prediction is thus obtained as follows:

R̂u,i = bu+ ci +


j

Au,jBj,i. (12.17)

Typically one wants to minimize the squared error between predicted ratings R̂u,i
and actual ratings Ru,i. User embeddings and item embeddings can then be
conveniently visualized when they are first reduced to a low dimension (two or
three), or they can be used to compare users or items against each other, just

like word embeddings. One way to obtain these embeddings is by performing a
singular value decomposition of the matrix R of actual targets (such as ratings).
This corresponds to factorizing R = UDV  (or a normalized variant) into the
product of two factors, the lower rank matrices A = UD and B = V  . One
problem with the SVD is that it treats the missing entries in an arbitrary way,
as if they corresponded to a target value of 0. Instead we would like to avoid
paying any cost for the predictions made on missing entries. Fortunately, the
sum of squared errors on the observed ratings can also be easily minimized by
gradient-based optimization. The SVD and the bilinear prediction of Eq. 12.17 both
performed very well in the competition for the Netflix prize (Bennett and Lanning,
2007), aiming at predicting ratings for films, based only on previous ratings by
a large set of anonymous users. Many machine learning experts participated in

this competition, which took place between 2006 and 2009. It raised the level of
research in recommender systems using advanced machine learning and yielded

improvements in recommender systems. Even though it did not win by itself,
the simple bilinear prediction or SVD was a component of the ensemble models
presented by most of the competitors, including the winners (Töscher , 2009;et al.
Koren, 2009).

Beyond these bilinear models with distributed representations, one of the first
uses of neural networks for collaborative filtering is based on the RBM undirected
probabilistic model (Salakhutdinov , 2007). RBMs were an important elementet al.
of the ensemble of methods that won the Netflix competition (Töscher , 2009;et al.

480

CHAPTER 12. APPLICATIONS

Koren, 2009). More advanced variants on the idea of factorizing the ratings matrix
have also been explored in the neural networks community (Salakhutdinov and
Mnih, 2008).

However, there is a basic limitation of collaborative filtering systems: when
a new item or a new user is considered, there is no way to evaluate its similarity
with other items or users (respectively), or the degree of association between,
say, that new user and existing items. This is called the problem of cold-start
recommendations. A general way of solving the cold-start recommendation problem
is to introduce extra information about the individual users and items. For example,

this extra information could be user profile information or features of each item.
Systems that use such information are called content-based recommender systems.
The mapping from a rich set of user features or item features to their embedding
can be learned through a deep learning architecture (Huang , 2013; Elkahkyet al.
et al., 2015)

Specialized deep learning architectures such as convolutional networks have
also been applied to learn to extract features from rich content such as from
musical audio tracks, for music recommendation (van den Oörd , 2013). Inet al.
that work, the convolutional net takes acoustic features as input and computes an
embedding for the associated song. The dot product between this song embedding
and the embedding for a user is then used to predict whether a user will listen to

a particular song.

12.5.1.1 Exploration Versus Exploitation

When making recommendations to users, an issue arises that goes beyond ordinary
supervised learning and into the realm of reinforcement learning. Many recommen-

dation problems are most accurately described theoretically as contextual bandits
(Langford and Zhang, 2008; Lu , 2010). The issue is that when we use theet al.
recommendation system to collect data, we get a biased and incomplete view of
the preferences of users: we only see the responses of users to the items they were
recommended and not to the other items. In addition, in some cases we may
not get any information on users for whom no recommendation has been made

(for example, with ad auctions, it may be that the price proposed for an ad was
below a minimum price threshold, or does not win the auction, so the ad is not
shown at all). More importantly, we get no information about what outcome
would have resulted from recommending any of the other items. This would be
like training a classifier by picking one class for each input case (typically the class
with the highest probability) and then only getting as feedback whether this was
the correct class or not. Clearly, each example conveys less information so more

481

CHAPTER 12. APPLICATIONS

examples are necessary. Worse, if we are not careful, we could end up with a
system that continues picking the wrong decisions even as more and more data is
collected, because the correct decision initially had a very low probability: until
the learner picks that correct decision, it does not learn about the correct decision.
This is similar to the situation in reinforcement learning where only the reward
for the selected actions are observed. In the general, reinforcement learning can
involve a sequence of many actions and many rewards. The bandits scenario is a
special case of reinforcement learning, in which the learning takes only a single
action and receives a single reward. The bandit problem is easier in the sense that

the learner knows which reward is associated with which action. In the general
reinforcement learning scenario, a high reward or a low reward might have been
caused by a recent action or by an action in the distant past. The term contextual
bandits refers to the case where the action is taken in the context of some input
variable that can inform the decision. For example, we at least know the user

identity, and we want to pick an item. The mapping from context to action is also

called a policy. The feedback loop between the learner and the data distribution
(which now depends on the actions of the learner) is a central research issue in the
reinforcement learning and bandits literature.

Reinforcement learning requires choosing a tradeoff between exploration and
exploitation. Exploitation refers to taking actions that come from the current,

best version of the learned policy—actions that we know will achieve a high reward.
Exploration refers to taking actions specifically in order to obtain more training
data. If we know that given context x, action a gives us a reward of 1, we do not
know whether that is the best possible reward. We may want to exploit our current
policy and continue taking action a in order to be relatively sure of obtaining a
reward of 1. However, we may also want to explore by trying action a . We do not

know what will happen if we try action a . We hope to get a reward of 2, but we
run the risk of getting a reward of . Either way, we at least gain some knowledge.0

Exploration can be implemented in many ways, ranging from occasionally
taking random actions intended to cover the entire space of possible actions, to
model-based approaches that compute a choice of action based on its expected

reward and the model’s amount of uncertainty about that reward.

Many factors determine the extent to which we prefer exploration or exploitation.
One of the most prominent factors is the time scale we are interested in. If the
agent has only a short amount of time to accrue reward, then we prefer more
exploitation. If the agent has a long time to accrue reward, then we begin with
more exploration so that future actions can be planned more effectively with more

knowledge. As time progresses and our learned policy improves, we move toward

482

CHAPTER 12. APPLICATIONS

more exploitation.

Supervised learning has no tradeoff between exploration and exploitation
because the supervision signal always specifies which output is correct for each
input. There is no need to try out different outputs to determine if one is better
than the model’s current output—we always know that the label is the best output.

Besides the exploration-exploitation trade-off, the feedback loop between learn-

ing and the environment via actions and observed examples also makes it less
trivial to evaluate and compare different policies on data that was generated using

another policy, but solutions exist (Dudik , 2011).et al.

12.5.2 Knowledge Representation, Reasoning and Question An-
swering

Deep learning approaches have been very successful in language modeling, machine
translation and natural language processing due to the use of embeddings for

symbols (Rumelhart , 1986a) and words (Deerwester , 1990; Bengioet al. et al.

et al., 2001). These embeddings represent semantic knowledge about individual
words and concepts. A research frontier is to develop embeddings for phrases,
relations between words and facts. Search engines already use machine learning for
this purpose but much more remains to be done to improve these more advanced
representations.

12.5.2.1 Knowledge, Relations and Question Answering

One such interesting question is how distributed representations can be trained to
capture the relations between two entities. These relations allow use to formalize

facts about objects and how objects interact with each other.

In mathematics, a binary relation is a set of ordered pairs of objects. Pairs
that are in the set are said to have the relation while those who are not in the set
do not. For example, we can define the relation “is less than” on the set of entities

{1, 2,3} by defining the set of ordered pairs S = {(1,2), (1,3), (2, 3)}. Once this
relation is defined, we can use it like a verb. Because (1,2) ∈ S , we say that 1 is
less than 2. Because (2,1) ∈ S , we can not say that 2 is less than 1. Of course, the

entities that are related to one another need not be numbers. We could define a
relation containing tuples like (is_a_type_of dog mammal,).

In the context of AI, we think of a relation as a sentence in a syntactically
simple and highly structured language. The relation plays the role of a verb,
while two arguments to the relation play the role of its subject and object. These

483

CHAPTER 12. APPLICATIONS

sentences take the form of a triplet of tokens

(subject verb object), , (12.18)

with values

(entityi , relationj, entity k). (12.19)

We can also define an , a concept analogous to a relation, but takingattribute
only one argument:

(entityi, attribute j). (12.20)

For example, we could define the has_fur attribute, and apply it to entities like
dog.

Many applications require representing relations and reasoning about them.
How should we best do this within the context of neural networks?

Machine learning models of course require training data. We can infer relations
between entities from training datasets consisting of unstructured natural language.
There are also structured databases that identify relations explicitly. A common
structure for these databases is the relational database, which stores this same
kind of information, albeit not formatted as three token sentences. When a
database is intended to convey commonsense knowledge about everyday life or

expert knowledge about an application area to an artificial intelligence system,
we call the database a knowledge base. Knowledge bases range from general
ones like Freebase, OpenCyc, WordNet, or Wikibase1 , etc. to more specialized
knowledge bases, like GeneOntology2 . Representations for entities and relations
can be learned by considering each triplet in a knowledge base as a training example

and maximizing a training objective that captures their joint distribution (Bordes
et al., 2013a).

In addition to training data, we also need to define a model family to train.
A common approach is to extend neural language models to model entities and
relations. Neural language models learn a vector that provides a distributed
representation of each word. They also learn about interactions between words,

such as which word is likely to come after a sequence of words, by learning functions
of these vectors. We can extend this approach to entities and relations by learning
an embedding vector for each relation. In fact, the parallel between modeling
language and modeling knowledge encoded as relations is so close that researchers
have trained representations of such entities by using both andknowledge bases

1Respectively available from these web sites: freebase.com, cyc.com/opencyc, wordnet.

princeton.edu wikiba.se,
2geneontology.org

484

CHAPTER 12. APPLICATIONS

natural language sentences (Bordes , 2011, 2012; Wang , 2014a) oret al. et al.
combining data from multiple relational databases (Bordes , 2013b). Manyet al.
possibilities exist for the particular parametrization associated with such a model.
Early work on learning about relations between entities (Paccanaro and Hinton,
2000) posited highly constrained parametric forms (“linear relational embeddings”),
often using a different form of representation for the relation than for the entities.
For example, Paccanaro and Hinton (2000); Bordes (2011) used vectors foret al.
entities and matrices for relations, with the idea that a relation acts like an operator
on entities. Alternatively, relations can be considered as any other entity (Bordes

et al., 2012), allowing to make statements about relations, but more flexibility is
put in the machinery that combines them in order to model their joint distribution.

A practical short-term application of such models is link prediction: predicting
missing arcs in the knowledge graph. This is a form of generalization to new
facts, based on old facts. Most of the knowledge bases that currently exist have
been constructed through manual labor, which tends to leave many and probably
the majority of true relations absent from the knowledge base. See Wang et al.
(2014b), Lin (2015) and Garcia-Duran (2015) for examples of such anet al. et al.
application. In general, only positive examples of facts are known, so the metrics
used (and also the objective function) are those used in information retrieval, based
on ranking and precision. For example, precision @10% counts how many time

the “correct” fact appears among the 10% highest scoring ones, when we consider
all the corrupted variants of the fact (e.g., by replacing one of entities by any one
in the set of entities). Another application of knowledge bases and distributed
representations for them is word-sense disambiguation (Navigli and Velardi, 2005;
Bordes , 2012), which is the task of deciding which of the senses of a word iset al.
the appropriate one, in some context.

Eventually, knowledge of relations combined with a reasoning process and
understanding of natural language could allow us to build a general question
answering system. A general question answering system must be able to process
input information and remember important facts, organized in a way that it can
retrieve and reason about them later. This remains a difficult open problem which

can only be solved in restricted “toy” environments. Currently, the best approach to
remembering and retrieving specific declarative facts is to use an explicit memory
mechanism, as described in Sec. 10.15. Memory networks were first proposed to
solve a toy question answering task (Weston , 2014). Kumar (2015)et al. et al.
have proposed an extension that uses GRU recurrent nets to read the input into
the memory and to produce the answer given the contents of the memory.

Deep learning has been applied to many other applications besides the ones

485

CHAPTER 12. APPLICATIONS

described here, and will surely be applied to even more after this writing. It would
be impossible to describe anything remotely resembling a comprehensive coverage
of such a topic. This survey provides a representative sample of what is possible
as of this writing.

This concludes Part II, which has described modern practices involving deep
networks, comprising all of the most successful methods. Generally speaking, these
methods involve using the gradient of a cost function to find the parameters of a
model that approximates some desired function. With enough training data, this
approach is extremely powerful. We now turn to Part III, in which we step into the

territory of research—methods that are designed to work with less training data
or to perform a greater variety of tasks, where the challenges are more difficult
and not as close to being solved as the situations we have described so far.

486

